Drehung um Einheitsvektor < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 15:17 Sa 02.07.2011 | Autor: | BarneyS |
Aufgabe | (a) Betrachten Sie eine rechtshändige Orthonormalbais $ [mm] \vec{e_1}, \vec{e_2}, \vec{e_3} [/mm] $ im Euklidischen Vektorraum $ [mm] \varepsilon_3 [/mm] $. Finden Sie die Matrix einer positiv orientierten Drehung der Vektoren (bzgl. $ [mm] \vec{e_1}, \vec{e_2}, \vec{e_3} [/mm] $) um den Winkel $ [mm] \alpha [/mm] $ um die durch den Einheitsvektor $ [mm] \vec{n} [/mm] = [mm] \bruch{1}{\wurzel{2}}(\vec{e_2}+\vec{e_3}) [/mm] $ gegebenen Achse.
(b) In der Situation von (a) finden Sie die Matrix einer positiv orientierten Drehung um den Winkel $ [mm] \alpha [/mm] $ um die durch einen beliebigen Einheitsvektor $ [mm] \vec{n} [/mm] $ gegebenen Drehachse. |
Hallo, meine Frage bezieht sich auf Aufgabe (b). (a) habe ich gelöst, indem ich den Vektor $ [mm] \vec{n} [/mm] $ als einen neuen Basisvektor $ [mm] \vec{e_1}' [/mm] $ betrachtet habe und die restlichen Basisvektoren $ [mm] \vec{e_2}', \vec{e_3}' [/mm] $ so bestimmt habe, dass sie zusammen eine Orthonormalbasis bilden. Ich habe die Matrix $ B $ der Basistransformation bestimmt und dann mit der Drehmatrix um $ [mm] \vec{e_1}' [/mm] $ gedreht. Dann habe ich mit $ [mm] B^{-1} [/mm] (= [mm] B^T) [/mm] $ den Vektor wieder bzgl. der alten Basis dargestellt.
Aber wie löse ich nun (b)?
Mein Ansatz:
$ [mm] \vec{n} [/mm] = [mm] \xi_1\vec{e_1}+\xi_2\vec{e_2}+\xi_3\vec{e_3} [/mm] $ mit der Bedingung $ [mm] \xi_1^2+\xi_2^2+\xi_3^2 [/mm] = 1 $ ... doch jetzt weiss ich nicht weiter. Wie bestimme ich die restlichen Basisvektoren?
Danke :)
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:25 Mo 04.07.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|