matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenDreieck-Verhältnis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Dreieck-Verhältnis
Dreieck-Verhältnis < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck-Verhältnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 28.02.2009
Autor: Mandy_90

Aufgabe
Gegeben sei das Dreieck ABC mit den Seiten a,b und [mm] c.\alpha [/mm] sei der Innenwinkel bei A.Zeigen Sie,dass die Winkelhalbierende des Winkels [mm] \alpha [/mm] die Seite [mm] a=\overline{BC} [/mm] im Verhältnis c:b teilt.
Hinweis: Die Winkelhalbierende [mm] \overrightarrow{AT} [/mm] kann mithilfe der Einheitsvektoren [mm] \bruch{1}{b}*\vec{b} [/mm] und  [mm] \bruch{1}{c}*\vec{c} [/mm] dargestellt werden.

Hallo zusammen^^

[Dateianhang nicht öffentlich]

Ich hab versucht diese Aufgabe zu lösen,komme jedoch nicht mehr weiter.Ich hoffe ihr könnt mir helfen.

Zunächst bin ich mit einer geschlossenen Vektorkette an die Sache rangegangen:

[mm] \overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0} [/mm]

Und dann hab ich diese Vektoren als Linearkombination der Vektoren [mm] \vec{a},\vec{b} [/mm] und [mm] \vec{c} [/mm] ausgedrückt.


[mm] \overrightarrow{AT}=\bruch{1}{b}*\vec{b}+ \bruch{1}{c}*\vec{c} [/mm]
[mm] \overrightarrow{TB}=-\alpha*\vec{a} [/mm]
[mm] \overrightarrow{BA}=\vec{c}=\vec{b}+\vec{a} [/mm]

Jetzt kann ich doch schreiben:

[mm] \bruch{\vec{b}}{b}+\bruch{\vec{b}+\vec{a}}{c}-\alpha*\vec{a}+\vec{b}+\vec{a}=\vec{0} [/mm]

Und klammere [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] aus:

[mm] \vec{a}*(\bruch{1}{c}-\alpha+1)+\vec{b}*(\bruch{1}{b}+\bruch{1}{c}+1)=\vec{0} [/mm]

Dann hab ich folgendes Gleichungssystem:

1.) [mm] \bruch{1}{c}-\alpha+1=0 [/mm]

2.) [mm] \bruch{1}{b}+\bruch{1}{c}+1=0 [/mm]

Das System kann man aber nicht lösen,weiß jemand wo mein Fehler liegt?

Vielen Dank

lg

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Dreieck-Verhältnis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Sa 28.02.2009
Autor: abakus


> Gegeben sei das Dreieck ABC mit den Seiten a,b und [mm]c.\alpha[/mm]
> sei der Innenwinkel bei A.Zeigen Sie,dass die
> Winkelhalbierende des Winkels [mm]\alpha[/mm] die Seite
> [mm]a=\overline{BC}[/mm] im Verhältnis c:b teilt.
>  Hinweis: Die Winkelhalbierende [mm]\overrightarrow{AT}[/mm] kann
> mithilfe der Einheitsvektoren [mm]\bruch{1}{b}*\vec{b}[/mm] und  
> [mm]\bruch{1}{c}*\vec{c}[/mm] dargestellt werden.
>  Hallo zusammen^^
>  
> [Dateianhang nicht öffentlich]
>  
> Ich hab versucht diese Aufgabe zu lösen,komme jedoch nicht
> mehr weiter.Ich hoffe ihr könnt mir helfen.
>  
> Zunächst bin ich mit einer geschlossenen Vektorkette an die
> Sache rangegangen:
>  
> [mm]\overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0}[/mm]
>  
> Und dann hab ich diese Vektoren als Linearkombination der
> Vektoren [mm]\vec{a},\vec{b}[/mm] und [mm]\vec{c}[/mm] ausgedrückt.
>  
>
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}[/mm]

Das ist Unfug. Du behauptest damit, dass [mm] \overrightarrow{AT} [/mm] den Betrag 1 hat.
Gruß Abakus

>  [mm]\overrightarrow{TB}=-\alpha*\vec{a}[/mm]


>  [mm]\overrightarrow{BA}=\vec{c}=\vec{b}+\vec{a}[/mm]
>  
> Jetzt kann ich doch schreiben:
>  
> [mm]\bruch{\vec{b}}{b}+\bruch{\vec{b}+\vec{a}}{c}-\alpha*\vec{a}+\vec{b}+\vec{a}=\vec{0}[/mm]
>  
> Und klammere [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] aus:
>  
> [mm]\vec{a}*(\bruch{1}{c}-\alpha+1)+\vec{b}*(\bruch{1}{b}+\bruch{1}{c}+1)=\vec{0}[/mm]
>  
> Dann hab ich folgendes Gleichungssystem:
>  
> 1.) [mm]\bruch{1}{c}-\alpha+1=0[/mm]
>  
> 2.) [mm]\bruch{1}{b}+\bruch{1}{c}+1=0[/mm]
>  
> Das System kann man aber nicht lösen,weiß jemand wo mein
> Fehler liegt?
>  
> Vielen Dank
>  
> lg


Bezug
                
Bezug
Dreieck-Verhältnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Sa 28.02.2009
Autor: Mandy_90

Das war nur ein Tippfehler,ich hab vergessen noch [mm] +\bruch{1}{c}*\vec{c} [/mm] dazu zu schreiben.Ich hab mit [mm] \overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c} [/mm] weitergerechnet,mein Fehler muss also ncoh weiter in der Rechnung liegen,ich weiß aber nicht wo ?

lg

Bezug
                        
Bezug
Dreieck-Verhältnis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 28.02.2009
Autor: abakus


> Das war nur ein Tippfehler,ich hab vergessen noch
> [mm]+\bruch{1}{c}*\vec{c}[/mm] dazu zu schreiben.Ich hab mit
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c}[/mm]
> weitergerechnet,mein Fehler muss also ncoh weiter in der
> Rechnung liegen,ich weiß aber nicht wo ?
>  
> lg

[mm] \overrightarrow{AT} [/mm] ist nicht die Summe von zwei Einheitsvektoren, sondern ein Vielfaches dieser Summe.

Bezug
                                
Bezug
Dreieck-Verhältnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 11.05.2009
Autor: Mandy_90


> > Das war nur ein Tippfehler,ich hab vergessen noch
> > [mm]+\bruch{1}{c}*\vec{c}[/mm] dazu zu schreiben.Ich hab mit
> >
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c}[/mm]
> > weitergerechnet,mein Fehler muss also ncoh weiter in der
> > Rechnung liegen,ich weiß aber nicht wo ?
>  >  
> > lg
> [mm]\overrightarrow{AT}[/mm] ist nicht die Summe von zwei
> Einheitsvektoren, sondern ein Vielfaches dieser Summe.

Ok,vielen Dank.

Das heißt, [mm] \overrightarrow{AT}=\alpha(\bruch{1}{b}\cdot{}\vec{b}+\bruch{1}{c}\cdot{}\vec{c}) [/mm]

[mm] \overrightarrow{TB}=-\beta*\vec{a} [/mm]

[mm] \overrightarrow{BA}=-\vec{c} [/mm]

Jetzt kann ich doch schreiben;

[mm] \overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0} [/mm]

Das heißt:

[mm] \alpha\bruch{1}{b}\cdot{}\vec{b}+\alpha\bruch{1}{c}\cdot{}\vec{c}-\beta*\vec{a}-\vec{c}=0 [/mm]

Aber irgendwie ergibt das keinen Sinn,weil ich das entstehende LGS nicht lösen kann.Da kommt für [mm] \beta=0 [/mm] raus.Das kann ja nicht sein.
Weiß jemand,was ich hier falsch mache?

Vielen Dank

lg

Bezug
                                        
Bezug
Dreieck-Verhältnis: Tipp
Status: (Antwort) fertig Status 
Datum: 18:47 So 17.05.2009
Autor: informix

Hallo Mandy_90,

> > > Das war nur ein Tippfehler,ich hab vergessen noch
> > > [mm]+\bruch{1}{c}*\vec{c}[/mm] dazu zu schreiben.Ich hab mit
> > >
> >
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c}[/mm]
> > > weitergerechnet,mein Fehler muss also ncoh weiter in der
> > > Rechnung liegen,ich weiß aber nicht wo ?
>  >  >  
> > > lg
> > [mm]\overrightarrow{AT}[/mm] ist nicht die Summe von zwei
> > Einheitsvektoren, sondern ein Vielfaches dieser Summe.
>
> Ok,vielen Dank.
>  
> Das heißt,
> [mm]\overrightarrow{AT}=\alpha(\bruch{1}{b}\cdot{}\vec{b}+\bruch{1}{c}\cdot{}\vec{c})[/mm]
>  
> [mm]\overrightarrow{TB}=-\beta*\vec{a}[/mm]
>  
> [mm]\overrightarrow{BA}=-\vec{c}[/mm]
>  
> Jetzt kann ich doch schreiben;
>  
> [mm]\overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0}[/mm]
>  
> Das heißt:
>  
> [mm]\alpha\bruch{1}{b}\cdot{}\vec{b}+\alpha\bruch{1}{c}\cdot{}\vec{c}-\beta*\vec{a}-\vec{c}=0[/mm]
>  
> Aber irgendwie ergibt das keinen Sinn,weil ich das
> entstehende LGS nicht lösen kann.Da kommt für [mm]\beta=0[/mm]
> raus.Das kann ja nicht sein.
>  Weiß jemand,was ich hier falsch mache?
>  

Du sollst doch nur ein Verhältnis von Streckenlängen nachweisen:
[mm] \bruch{|\overrightarrow{TB}|}{|\overrightarrow{TC}|}=\bruch{c}{b} [/mm]

Schau dir also mal die beiden Längen an und versuche, das Verhältnis nachzuweisen.

Übrigens: [mm] \alpha [/mm] ist der Winkel bei A, benutze also stattdessen $r_$ oder [mm] \lambda [/mm] als reelle Variable.


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]