matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungDreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Abiturvorbereitung" - Dreieck
Dreieck < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: Seiten- und Winkelhalbierende
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 02.06.2009
Autor: ponysteffi

Aufgabe
Gegeben ist ein Dreieck ABC mit AC = 7cm , BC = 8cm und [mm] \gamma [/mm] = 70°

Die Seitenhalbierende [mm] s_{a} [/mm] und die Winkelhalbierende von [mm] \gamma [/mm] schneiden sich im Punkt P.
Berechnen Sie die Strecke CP.

Hier sehe ich irgendwie keinen Weg etwas auszurechnen...

ICh finde keine Winkel oder Längen zum berechnen, die mich irgendwie weiterbringen.



Vielen Dank im Voraus für eure Hilfe

        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Di 02.06.2009
Autor: Steffi21

Hallo, ganz wichtig bei diesen Aufgaben, eine Skizze machen vom Dreieck ABC, trage die bekannten Strecken und Winkel farbig ein, jetzt Seitenhalbierende und Winkelhalbierende einzeichnen, du hast Punkt P, jetzt überlege dir, was macht die Seiten- bzw. Winkelhalbierende, es entstehen Teildreiecke, als Hinweis: berechne den Winkel CAP,
Steffi

Bezug
                
Bezug
Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Di 02.06.2009
Autor: ponysteffi


> Hallo, ganz wichtig bei diesen Aufgaben, eine Skizze machen
> vom Dreieck ABC, trage die bekannten Strecken und Winkel
> farbig ein, jetzt Seitenhalbierende und Winkelhalbierende
> einzeichnen, du hast Punkt P, jetzt überlege dir, was macht
> die Seiten- bzw. Winkelhalbierende, es entstehen
> Teildreiecke, als Hinweis: berechne den Winkel CAP,
>  Steffi


Hallo Steffi

Aufzeichnen ist klar, mache ich immer... Aber wie kann ich denn den Winkel CAP berechnen??

Bezug
                        
Bezug
Dreieck: Alternativer Weg
Status: (Antwort) fertig Status 
Datum: 14:38 Di 02.06.2009
Autor: weightgainer

Hallo,
ich habe bei solchen geometrischen Problemen auch immer Probleme, diese Zusammenhänge zu sehen. Ich kann dir deswegen auch nicht sagen, wie man den Winkel CPA ermittelt - bestimmt kann man da Eigenschaften der Seitenhalbierenden ausnutzen.

Eine ziemlich "heftige" Alternative ist mir noch eingefallen:
wenn du dir das Dreieck in ein Koordinatensystem zeichnest, kannst du alle Verbindungslinien als Geraden aufschreiben. Dann musst du letztlich "nur" die Seitenhalbierende als Gerade schreiben und die Winkelhalbierende als Gerade schreiben und den Schnittpunkt der beiden ermitteln.
Ich würde den Punkt C in den Ursprung legen und den Punkt A auf die x-Achse, also C(0/0) und A(7/0).
Die Winkelhalbierende ist dann eine Ursprungsgerade, die Steigung ist ja der Tangens des Steigungswinkels, also [mm]w(x)=tan 35° * x[/mm].
Für die Geradengleichung der Seitenhalbierenden musst du nur die Koordinaten des Mittelpunkts der Strecke CB finden. Die Länge bis dahin ist 4 und diese Länge kannst du mithilfe des Pythagoras berechnen:
[mm]4^2=\wurzel{x^2+f^2(x)}[/mm] wobei [mm]f(x)=tan 70° * x[/mm] die Gerade durch C und B ist. Damit kannst du die x-Koordinate [mm] x_M [/mm] des Mittelpunkts berechnen, danach mit [mm] f(x_M) [/mm] die y-Koordinate und somit die Geradengleichung.
Die beiden Geradengleichungen noch gleichsetzen und du bekommst die Koordinaten von P heraus. Dann noch einmal den Pythagoras und du hast die Länge...
Ich füge mal ein Bild ein - die Länge ist allerdings gemessen, nicht berechnet.
[Dateianhang nicht öffentlich]

Gruß,
weightgainer

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Di 02.06.2009
Autor: Steffi21

Hallo, die Seitenhalbierende [mm] s_a [/mm] verbindet doch den Punkt A mit dem Mittelpunkt der Strecke [mm] \overline{BC}, [/mm] nennen wir diesen Punkt D, jetzt hast du das Dreieck ADC, du kennst [mm] \overline{AC}=7cm, \overline{CD}=4cm [/mm] und [mm] \gamma=70^{0}, [/mm] jetzt sollte doch der Winkel CAP (oder CAD) kein Problem sein, Steffi

Bezug
                                
Bezug
Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 02.06.2009
Autor: ponysteffi

Ok danke vielmals!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]