matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieDreifachintegrale Grenzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Dreifachintegrale Grenzen
Dreifachintegrale Grenzen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreifachintegrale Grenzen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:15 Fr 09.03.2007
Autor: cardia

Aufgabe
a) Skizzieren das dreidimensionale Gebiet R, das durch x+y+z=a (a>0), x=0, y=0, z=0 begrenzt wird.
b) Berechnen Sie das Dreifachintegral [mm] \integral\integral_{R}\integral(x^2+y^2+z^2)dzdydx [/mm]

Hallo alle!
Hier habe ich noch son Brocken von Aufgabe.
Teil a denke ich habe ich hinbekommen (siehe unten) (zumindest sieht´s gut aus). Doch Teil b ?????? Was habe ich denn jetzt für Integrationsgrenzen und muss ich die in Aufgabenteil b vorgegebene Integrationsreihenfolge beibehalten?

DANKE DANKE DANKE DANKE

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Dreifachintegrale Grenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Fr 09.03.2007
Autor: Event_Horizon

Hallo!

Deine erste Aufgabe sieht gut aus!

Zur zweiten: Nun, du kannst erstmal sagen, daß 0<x<a ist. Damit gehst du die x-Achse entlang. Wie weit kannst du dann in y-Richtung gehen? Nun, das hängt von x ab: 0<y<a-x. Damit hast du insgesamt schon diese Dreiecksfläche in der xy-Ebene parametrisiert.

Mit z geht es jetzt genauso, die Frage ist, wie hoch das Integrationsgebiet über einem bestimmten Punkt (x,y) reicht. Nun, das ist 0<z<a-x-y

Damit hast du deine Grenzen, du mußt jetzt nur in der richtigen Reihenfolge integrieren, also zuerst z, dann y und dann x!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]