matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDualbasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Dualbasis
Dualbasis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dualbasis: Korrektur, Hilfe
Status: (Frage) überfällig Status 
Datum: 11:46 Fr 30.11.2012
Autor: kullinarisch

Aufgabe
Zeige, dass folgende Untermannigfaltigkeit orientierbar ist. Wähle eine Orientierung und berechne jeweils eine lokale Darstellung der Volumenform.

Bizylinderkurve [mm] C=\{(x,y,z)\in\IR^3| x^2+y^2=1; y^2+z^2=2\} [/mm]

Hallo zusammen. Die Aufgabe gehört zwar irgendwo in den Analysis Bereich, aber es geht laut Diskussionsthema ja auch nur um eine Dualbasis.

Ich mit Hilfe der Abbildung

F: [mm] \IR^3 \to \IR^2 [/mm]

[mm] F(x,y,z)=\pmat{ x^2+y^2-1\\ y^2+z^2-2 } [/mm] wobei [mm] \vektor{0 \\ 0} [/mm] ein regulärer Wert ist den Tangentialraum bestimmt (Satz vom regulärer Wert):

[mm] T_pC=Ker(df)=Ker\pmat{ 2x & 2y & 0 \\ 0 & 2y & 2z }=span\vektor{-z\\ 0 \\x} [/mm]

Vorausgesetzt ich habe keinen Fehler gemacht, brauche ich jetzt erstmal eine Dualbasis von T_pC. Ich bin da etwas raus. Es gilt doch für die Dualbasis [mm] D_pC=\{b\} [/mm] wobei b der einzige duale Vektor ist

[mm] b(\vektor{-z\\ 0 \\x})=1 [/mm]

Muss dann b nicht so aussehen: [mm] \vektor{0 \\ 1 \\ 0} [/mm]

Ich bin gerade überfragt, ich weiß nur wie man die Dualbasis mithilfe einer Parametrisierung berechnet.

Danke für Hilfe, Gruß kulli

        
Bezug
Dualbasis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 03.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]