matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDuale Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Duale Abbildungen
Duale Abbildungen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Duale Abbildungen: Tipp und Korretur
Status: (Frage) beantwortet Status 
Datum: 15:20 Di 09.06.2009
Autor: Herecome

Aufgabe
Sei $V = [mm] C^{\infty}(\IR)$ [/mm] der [mm] \IR- [/mm] Vektorraum der beliebig oft diff.baren Funktionen von [mm] \IR [/mm] nach [mm] \IR. [/mm] Seies für $f [mm] \in [/mm] V$ die Abbildungen [mm] $\delta, \gamma,\alpha [/mm] : V [mm] \to \IR$ [/mm] gegeben durch
[mm] $\delta(f) [/mm] = f(0)$ , $ [mm] \gamma(f) [/mm] = [mm] \integral_{0}^{1}{f(x) dx}$ [/mm] , [mm] $\alpha(f) [/mm] = [mm] f^{(1)}(0)$ [/mm] (erste Ableitung)
a) Zeigen Sie, dass [mm] \delta, \gamma [/mm] und [mm] \alpha [/mm] Elemente von [mm] V^{\*} [/mm] sind.
b) Die Ableitung [mm] $\bruch{d}{dx} [/mm] : V [mm] \to [/mm] V : f [mm] \mapsto [/mm] f´$ ist eine lineare Abbildung. [mm] $(\bruch{d}{dx})^{\*}$ [/mm] ist also eine (lineare) Abbildung von [mm] V^{\*} [/mm] nach [mm] V^{\*}. [/mm] Zeigen Sie, dass [mm] $(\bruch{d}{dx})^{\*}(\delta)=\alpha$ [/mm] ist.
c) Zeigen Sie, dass [mm] \delta, \gamma [/mm] und [mm] \alpha [/mm] linear unabhängig sind.

zu a)
es ist zu Zeigen, dass die Abbildungen linear sind.
für [mm] $\delta(f) [/mm] = f(0)$
[mm] $\delta(a*f+b*g) [/mm] = (a*f+b*g)(0) = a*f(0) + b*g(0) = [mm] a*\delta(f) [/mm] + [mm] b*\delta(g)$ [/mm]

für [mm] \gamma(f)=\integral_{0}^{1}{f(x) dx} [/mm]
[mm] $\gamma(a*f+b*g)=\integral_{0}^{1}{(a*f+b*g)(x) dx}=\integral_{0}^{1}{a*f(x) dx}+\integral_{0}^{1}{b*g(x) dx}=a*\integral_{0}^{1}{f(x) dx}+b*\integral_{0}^{1}{g(x) dx}=a*\gamma(f)+b*\gamma(g)$ [/mm]

für [mm] \alpha(f)= $f^{(1)}(0)$ [/mm]
[mm] $\alpha(a*f+b*g)=(a*f+b*g)^{(1)}(0)=a*f^{(1)}(0)+b*g^{(1)}(0)=a*\alpha(f)+b*\alpha(g)$ [/mm]

zu b) hab ich gedacht, dass es logisch sei, dass die ableitung von f nunmal f´ ist. Wäre ein einzeiler geworden, aber ich hab nicht die duale Ableitung beachtet... wie hab ich das zu machen?

zu c) hatte ich mir überlegt, dass ich skalare vor die abbildungen setze, und dann zeige, dass die skalare alle gleich 0 sein müssen, damit wäre die unabhängigkeit gezeigt, aber gilt das für abbildungen genauso wie für vektoren?

danke für die Hilfe
Lg

        
Bezug
Duale Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Di 09.06.2009
Autor: fred97


> Sei [mm]V = C^{\infty}(\IR)[/mm] der [mm]\IR-[/mm] Vektorraum der beliebig
> oft diff.baren Funktionen von [mm]\IR[/mm] nach [mm]\IR.[/mm] Seies für [mm]f \in V[/mm]
> die Abbildungen [mm]\delta, \gamma,\alpha : V \to \IR[/mm] gegeben
> durch
>  [mm]\delta(f) = f(0)[/mm] , [mm]\gamma(f) = \integral_{0}^{1}{f(x) dx}[/mm]
> , [mm]\alpha(f) = f^{(1)}(0)[/mm] (erste Ableitung)
>  a) Zeigen Sie, dass [mm]\delta, \gamma[/mm] und [mm]\alpha[/mm] Elemente von
> [mm]V^{\*}[/mm] sind.
>  b) Die Ableitung [mm]\bruch{d}{dx} : V \to V : f \mapsto f´[/mm]
> ist eine lineare Abbildung. [mm](\bruch{d}{dx})^{\*}[/mm] ist also
> eine (lineare) Abbildung von [mm]V^{\*}[/mm] nach [mm]V^{\*}.[/mm] Zeigen
> Sie, dass [mm](\bruch{d}{dx})^{\*}(\delta)=\alpha[/mm] ist.
>  c) Zeigen Sie, dass [mm]\delta, \gamma[/mm] und [mm]\alpha[/mm] linear
> unabhängig sind.
>  zu a)
>  es ist zu Zeigen, dass die Abbildungen linear sind.
>  für [mm]\delta(f) = f(0)[/mm]
>  [mm]\delta(a*f+b*g) = (a*f+b*g)(0) = a*f(0) + b*g(0) = a*\delta(f) + b*\delta(g)[/mm]
>  
> für [mm]\gamma(f)=\integral_{0}^{1}{f(x) dx}[/mm]
>  
> [mm]\gamma(a*f+b*g)=\integral_{0}^{1}{(a*f+b*g)(x) dx}=\integral_{0}^{1}{a*f(x) dx}+\integral_{0}^{1}{b*g(x) dx}=a*\integral_{0}^{1}{f(x) dx}+b*\integral_{0}^{1}{g(x) dx}=a*\gamma(f)+b*\gamma(g)[/mm]
>  
> für [mm]\alpha(f)=[/mm]  [mm]f^{(1)}(0)[/mm]
>  
> [mm]\alpha(a*f+b*g)=(a*f+b*g)^{(1)}(0)=a*f^{(1)}(0)+b*g^{(1)}(0)=a*\alpha(f)+b*\alpha(g)[/mm]
>


Alles richtig



> zu b) hab ich gedacht, dass es logisch sei, dass die
> ableitung von f nunmal f´ ist. Wäre ein einzeiler geworden,
> aber ich hab nicht die duale Ableitung beachtet... wie hab
> ich das zu machen?

Allgemein: ist T:V [mm] \to [/mm] V linear, so ist T*: V* [mm] \to [/mm] V* gegeben durch

               [mm] (T^{\*}\beta)(f) [/mm] = [mm] \beta(Tf) [/mm]  für f [mm] \in [/mm] V und [mm] \beta \in [/mm] V*

Sei T =  [mm] \bruch{d}{dx} [/mm] und [mm] \beta [/mm] = [mm] \delta. [/mm]

Du mußt zeigen:

                [mm] \delta(Tf) [/mm] = [mm] \alpha(f) [/mm] für jedes f [mm] \in [/mm] V

Das kriegst Du hin !





>  
> zu c) hatte ich mir überlegt, dass ich skalare vor die
> abbildungen setze, und dann zeige, dass die skalare alle
> gleich 0 sein müssen, damit wäre die unabhängigkeit
> gezeigt, aber gilt das für abbildungen genauso wie für
> vektoren?

Bez. wir mit Hom(V) die Menge aller linearen Abb. von V in sich, so sit Dir sicher bekannt, dass Hom(V) ein Vektorraum ist.

FRED





>  
> danke für die Hilfe
>  Lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]