matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDualitaet und Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Dualitaet und Matrizen
Dualitaet und Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dualitaet und Matrizen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:07 Do 16.12.2004
Autor: pekola

Hallo,

ich stehe mit dem Dualraum noch ein bisschen auf Kriegsfuss.

Wie ist den das bei linearen Abbildungen:
Wenn ich mir den Zeilenvektorraum betrachte, dann stehen doch da genau (bei m x n Matrix) n Linearformen, die abbilden vom  [mm] \IR^m [/mm] in den Skalarkoerper...

Gibt es da also Aussagen die eine lineare Abbildung in Zshg bringen mit dem Dualitaetsbegriff bzw. Linearforme....

Jeder Tipp ist hilfreich...

Danke fuer Eure Hilfe.

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dualitaet und Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Fr 17.12.2004
Autor: Julius

Hallo pekola!

Ja, da gibt es sigar einen höchst interessanten Zusammenhang!! :-)

Es sei $L:V [mm] \to [/mm] W$ eine lineare Abbildung zwischen endlichdimensionalen Vektorräumen. Diese induziert eine lineare Abbildung zwischen den beiden Dualräumen, vermöge:

[mm] $L^{\*} [/mm] : [mm] \begin{array}{ccc} W^{\*} & \to & V^{\*} \\[5pt] w^{\*} & \mapsto & w^{\*} \circ L.\end{array}$ [/mm]

Das war noch nichts Spektakuläres. Jetzt aber kommt es:

Es sei [mm] ${\cal A}$ [/mm] eine fest gewählte Basis von $V$ und [mm] ${\cal B}$ [/mm] eine fest gewählt Basis von $W$ sowie [mm] ${\cal A}^{\*}$ [/mm] und [mm] ${\cal B}^{\*}$ [/mm] die zugehörigen dualen Basen. Dann gilt:

[mm] $M_{{\cal B}^{\*}}^{{\cal A}^{\*}}(L^{\*}) [/mm] =  [mm] \left( M_{{\cal A}}^{{\cal B}}(L)\right)^T$, [/mm]

d.h. bei fest gewählten Basen ist die Matrixdarstellung von [mm] $L^{\*}$ [/mm] bezüglich der dualen Basen nichts anderes als die Transponierte der Matrixdarstellung von $L$!

(Man sagt in der Kategorientheorie dazu, dass es sich um einen kontravarianten Funktor handelt, aber das würde jetzt zu weit führen. ;-))

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]