matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungDurchstoßpunkt Gerade Punkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Durchstoßpunkt Gerade Punkt
Durchstoßpunkt Gerade Punkt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durchstoßpunkt Gerade Punkt: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 10.01.2007
Autor: Maggie087

Aufgabe
A (2/2/0) Gerade : [mm] G:\vec{x} [/mm] = [mm] \vektor{0 \\ 0\\2} [/mm] + t [mm] \vektor{3 \\ -3\\1} [/mm]

Berechnen sie die Durchstoßpunkte P und Q  der [mm] x_{1} [/mm] - Achse  und der [mm] x_{2} [/mm] - Achse durch die ebene E

Guten Abend!

Ich weiß nicht, wie ich an die Aufgabe ran gehen soll.Es ist klar, dass ich den schnittpunkt glaub ich mit den Achsen suchen, also müsste ich ja von der ebene, welche ich schon errechnet habe, den abstand berechenen von den Achsen. Allerdings weiß ich nicht, wie die Koordinaten von P und Q sind, nur irgendwas mit 0 muss es ja sein ...

Dankeschön

Maggie

        
Bezug
Durchstoßpunkt Gerade Punkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Mi 10.01.2007
Autor: Zwerglein

Hi, Maggie,

und was ist da die Ebene E?

mfG!
Zwerglein

Bezug
                
Bezug
Durchstoßpunkt Gerade Punkt: Ebene E
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Do 11.01.2007
Autor: Maggie087

Die Ebene lautet :

E : [mm] \vec{x} [/mm] : [mm] \vektor{2 \\ 2 \\ 0} [/mm] + r [mm] \vektor{-2 \\ -2 \\ 2} [/mm] + s [mm] \vektor{1 \\ -5\\ 3} [/mm]

Bezug
                        
Bezug
Durchstoßpunkt Gerade Punkt: Sorry, ich weiß nicht weiter
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 11.01.2007
Autor: Maggie087

Sorry, weiß wirklich nciht weiter . . .

Bezug
                                
Bezug
Durchstoßpunkt Gerade Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Do 11.01.2007
Autor: Zwerglein

Hi, Maggie,

Für Punkte auf der [mm] x_{1}-Achse [/mm] gilt logischer Weise:
[mm] x_{2} [/mm] = 0 und [mm] x_{3} [/mm] = 0.
Wenn Du also diese Koordinaten in Deiner Ebene =0 setzt, kannst Du s und t berechnen und den gesuchten Punkt P ermitteln.

Für Q (auf der [mm] x_{2}-Achse) [/mm] gilt: [mm] x_{1}=0 [/mm] und [mm] x_{3}=0. [/mm]
Der Rest geht analog.

Zur Kontrolle:
Ich krieg' raus: P(6 / 0 / 0) und Q(0 / 3 / 0).

mfG!
Zwerglein

Bezug
        
Bezug
Durchstoßpunkt Gerade Punkt: Aufgabe
Status: (Antwort) fertig Status 
Datum: 19:03 Do 11.01.2007
Autor: night

Hallo Maggie

Du hast eine Geradengleichung und die Ebenengleichung.
Es gibt da ein bestimmtes System, dass du anwenden könntest.
Setze die Gerade und die Ebene gleich.
g=e


löse nach den variablen auf und setze t=?
in die Parametergleichung der Geraden ein,damit erhälst du den Ortsvektor des Durchstoßpunktes und somit auch den Durchstoßpunkt.

Gruß Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]