matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDynkin- System
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Dynkin- System
Dynkin- System < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dynkin- System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Di 12.05.2020
Autor: NathanR

Aufgabe
a) $F$ sei eine [mm] $\sigma$ [/mm] - Algebra in [mm] $\Omega \neq \emptyset$ [/mm] und [mm] $\mu_{1}, \mu_{2}$ [/mm] seien zwei Maße auf [mm] $(\Omega, [/mm] F)$.

Zeige: Für $A  [mm] \in [/mm] F$ mit [mm] $\mu_{1}(A) [/mm] = [mm] \mu_{2}(A) [/mm] < [mm] \infty$ [/mm] ist


[mm] $D_{A} [/mm] := [mm] \{ D \in F\; \vert \; \mu_{1}(A \cap D) = \mu_{2}(A \cap D) \}$ [/mm]

ein Dynkin-System in [mm] $\Omega$. [/mm]

Ist [mm] $D_{A}$ [/mm] eine [mm] $\sigma$ [/mm] - Algebra in [mm] $\Omega$ [/mm] ?

Man gebe  eventuell ein Gegenbeispiel an.


b) Man gebe ein Beispiel für einen Ring an, der kein Dynkin-System ist
und ein Beispiel fur ein Dynkin-System, das kein Semiring ist.

Moin am frühen Morgen ;-)


Sei $A [mm] \in [/mm] F$ mit [mm] $\mu_{1}, \mu_{2}$. [/mm]

Um zu zeigen, dass [mm] $D_{A}$ [/mm] ein Dynkin - System ist, zeige ich

i) [mm] $\Omega \in D_{A}$ [/mm]

ii) Aus $B, C [mm] \in [/mm] D$ mit $C [mm] \subseteq [/mm] B$ folgt $B [mm] \setminus [/mm] C [mm] \in D_{A}$ [/mm] oder

ii)' Aus $B [mm] \in D_{A}$ [/mm] folgt [mm] $B^{c} \in D_{A}$ [/mm]

iii) Für abzählbar viele [mm] $A_{1}, A_{2}, \ldots\in D_{A}$ [/mm] mit [mm] $A_{i} \cap A_{j} [/mm] = [mm] \emptyset$ [/mm] für $i [mm] \neq [/mm] j$ folgt [mm] $\bigcup\limits_{i \in \mathbb{N}} A_{i} \in D_{A}$. [/mm]



Die i) ist klar.


Es gilt $A [mm] \subseteq \Omega$, [/mm] d.h. [mm] $\Omega \cap [/mm] A = A $.

Folglich ergibt sich [mm] $\mu_{1} [/mm] (A [mm] \cap \Omega) [/mm] = [mm] \mu_{1} [/mm] (A) = [mm] \mu_{2} [/mm] (A )  = [mm] \mu_{2} [/mm] (A [mm] \cap \Omega)$ [/mm]

Also ist [mm] $\Omega \in D_{A}$ [/mm]




Die ii) ist für mich weniger klar, da ich es nicht hin bekomme, die Menge geschickt umzuschreiben, so dass ich auf eine Lösung komme.

Seien $B, C [mm] \in D_{A}$ [/mm] mit $C [mm] \subseteq [/mm] B$.

Da $B [mm] \in D_{A}$, [/mm]  gilt [mm] $\mu_{1} [/mm] (A [mm] \cap [/mm] B) = [mm] \mu_{2} [/mm] (A [mm] \cap [/mm] B)$

Da $C [mm] \in D_{A}$, [/mm]  gilt [mm] $\mu_{1} [/mm] (A [mm] \cap [/mm] C) = [mm] \mu_{2} [/mm] (A [mm] \cap [/mm] C)$


Wie zeige ich, dass [mm] $\mu_{1} [/mm] (A [mm] \cap [/mm] B [mm] \setminus [/mm] C) = [mm] \mu_{2} [/mm] (A [mm] \cap [/mm] B [mm] \setminus [/mm] C)$ gilt ?

Mir fällt keine Idee ein, wie ich die Menge $A [mm] \cap [/mm] B [mm] \setminus [/mm] C$ geschickt umschreiben kann, außer


$A [mm] \cap [/mm] B [mm] \setminus [/mm] C = A [mm] \cap [/mm] B [mm] \cap C^{c}$ [/mm]


Ich habe vor, die Menge irgendwie als disjunkte Vereinigung zu schreiben, so dass ich die [mm] $\sigma$ [/mm] - Additivität der Maße [mm] $\mu_{1}$ [/mm] und [mm] $\mu_{2}$ [/mm] ausnutzen kann.

Vielleicht ergibt sich dann was nützliches.


Bedanke mich schon mal  im Voraus!

        
Bezug
Dynkin- System: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Di 12.05.2020
Autor: Gonozal_IX

Hiho,

>  Moin am frühen Morgen ;-)

naja… wenn du das um 6:00 geschrieben hättest…

> Ich habe vor, die Menge irgendwie als disjunkte Vereinigung
> zu schreiben, so dass ich die [mm]\sigma[/mm] - Additivität der
> Maße [mm]\mu_{1}[/mm] und [mm]\mu_{2}[/mm] ausnutzen kann.
>  
> Vielleicht ergibt sich dann was nützliches.

zeige lieber ii') das ist ein Einzeiler:
Es ist [mm] $\Omega [/mm] = B [mm] \cup B^c$ [/mm] und damit sowohl [mm] $\mu_1(A) [/mm] = [mm] \mu_1(A \cap [/mm] (B [mm] \cup B^c)) [/mm] = [mm] \ldots$ [/mm] als auch [mm] $\mu_2(A) [/mm] = [mm] \mu_2(A \cap [/mm] (B [mm] \cup B^c)) [/mm] = [mm] \ldots$ [/mm]

Mit [mm] $\mu_1(A) [/mm] = [mm] \mu_2(A)$ [/mm] folgt das Gewünschte…

Gruß,
Gono

Bezug
                
Bezug
Dynkin- System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:10 Mi 13.05.2020
Autor: NathanR

Guten Morgen!


> zeige lieber ii') das ist ein Einzeiler:
>  Es ist [mm]\Omega = B \cup B^c[/mm] und damit sowohl [mm]\mu_1(A) = \mu_1(A \cap (B \cup B^c)) = \ldots[/mm]
> als auch [mm]\mu_2(A) = \mu_2(A \cap (B \cup B^c)) = \ldots[/mm]
>  
> Mit [mm]\mu_1(A) = \mu_2(A)[/mm] folgt das Gewünschte…
>  
> Gruß,
>  Gono


Stimmt... Dankeschön für den Tipp.


Sei $B [mm] \in D_{A}$. [/mm]

Es ist [mm] $\Omega [/mm] = B [mm] \cup B^{c}$. [/mm]


[mm] $\mu_{1}(A) [/mm] = [mm] \mu_{1}(A) [/mm] = [mm] \mu_{1}(A \cap \Omega) [/mm]  = [mm] \mu_{1}(A \cap [/mm] (B [mm] \cup B^{c})) [/mm] = [mm] \mu_{1}(A \cap [/mm] B [mm] \cup [/mm] A [mm] \cap B^{c})$ [/mm]


[mm] $\mu_{2}(A) [/mm] = [mm] \mu_{2}(A) [/mm] = [mm] \mu_{2}(A \cap \Omega) [/mm]  = [mm] \mu_{2}(A \cap [/mm] (B [mm] \cup B^{c})) [/mm] = [mm] \mu_{2}(A \cap [/mm] B [mm] \cup [/mm] A [mm] \cap B^{c})$ [/mm]



Weil die Mengen $A [mm] \cap [/mm] B$ und $A [mm] \cap B^{c}$ [/mm] disjunkt sind, gilt


[mm] $\mu_{1} [/mm] (A) = [mm] \mu_{1}(A \cap [/mm] B [mm] \cup [/mm] A [mm] \cap B^{c}) [/mm] = [mm] \mu_{1}(A \cap [/mm] B ) + [mm] \mu_{1} [/mm] ( A [mm] \cap B^{c})$ [/mm] und [mm] $\mu_{2} [/mm] (A) = [mm] \mu_{2}(A \cap [/mm] B [mm] \cup [/mm] A [mm] \cap B^{c}) [/mm] = [mm] \mu_{2}(A \cap [/mm] B ) + [mm] \mu_{2} [/mm] ( A [mm] \cap B^{c})$ [/mm]


Wegen der Voraussetzung haben wir die Gleichheit [mm] $\mu_{1}(A \cap [/mm] B ) + [mm] \mu_{1} [/mm] ( A [mm] \cap B^{c})$ [/mm] und [mm] $\mu_{2} [/mm] (A)  = [mm] \mu_{2}(A \cap [/mm] B ) + [mm] \mu_{2} [/mm] ( A [mm] \cap B^{c})$ [/mm]

Daraus folgt sofort, dass [mm] $\mu_{1} [/mm] ( A [mm] \cap B^{c}) [/mm] = [mm] \mu_{2} [/mm] ( A [mm] \cap B^{c})$ [/mm] . Also ist [mm] $B^{c} \in D_{A}$. [/mm]






Es scheint so, als könnte ich den selben Trick auch anwenden, wenn ich die Eigenschaft $iii)$ nachweisen möchte.


Seien [mm] $A_{1}, A_{2}, \ldots \in D_{A}$ [/mm] mit [mm] $A_{i} \cap A_{j} [/mm] = [mm] \emptyset$ [/mm] für $ i [mm] \neq [/mm] j$.


Es  ist [mm] $\Omega [/mm] = [mm] \bigcup\limits_{i = 1}^{\infty} A_{i} \cup \left ( \bigcup\limits_{i = 1}^{\infty} A_{i} \right )^{c}$ [/mm]


Dann ergibt sich


[mm] $\mu_{1}(A) [/mm] = [mm] \mu_{1}(A \cap \Omega) [/mm] = [mm] \mu_{1}\left (A \cap \bigcup\limits_{i = 1}^{\infty} A_{i} \cup \left ( \bigcup\limits_{i = 1}^{\infty} A_{i} \right )^{c}\right [/mm] ) = [mm] \mu_{1}\left ( \bigcup\limits_{i = 1}^{\infty} A \cap A_{i} \cup \left ( \bigcup\limits_{i = 1}^{\infty} A_{i} \right )^{c}\right [/mm] ) =  [mm] \mu_{1}\left ( \bigcup\limits_{i = 1}^{\infty} A \cap A_{i} \cup \bigcap\limits_{i = 1}^{\infty} A_{i}^{c}\right [/mm] ) =  [mm] \mu_{1}\left ( \bigcap\limits_{i = 1}^{\infty} \bigcup\limits_{i = 1}^{\infty} (A \cap A_{i}) \cup A_{i}^{c}\right [/mm] )  =  [mm] \mu_{1}\left ( \bigcap\limits_{i = 1}^{\infty} \bigcup\limits_{i = 1}^{\infty} (A \cup A_{i}^{c}) \cap (A_{i} \cup A_{i}^{c}) \right [/mm] ) =  [mm] \mu_{1}\left ( \bigcap\limits_{i = 1}^{\infty} \bigcup\limits_{i = 1}^{\infty} (A \cup A_{i}^{c}) \cap \Omega \right [/mm] ) = [mm] \mu_{1}\left ( \bigcap\limits_{i = 1}^{\infty} \bigcup\limits_{i = 1}^{\infty} (A \cup A_{i}^{c})\right [/mm] ) $


Hättest du dazu auch einen Tipp, wie man weiter vereinfachen könnte (sofern das bis jetzt richtig ist) ?


Viele Grüße, Nathan

Bezug
                        
Bezug
Dynkin- System: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 13.05.2020
Autor: Gonozal_IX

Hiho,

> Wegen der Voraussetzung haben wir die Gleichheit [mm]\mu_{1}(A \cap B ) + \mu_{1} ( A \cap B^{c})[/mm]
> und [mm]\mu_{2} (A) = \mu_{2}(A \cap B ) + \mu_{2} ( A \cap B^{c})[/mm]
>  
> Daraus folgt sofort, dass [mm]\mu_{1} ( A \cap B^{c}) = \mu_{2} ( A \cap B^{c})[/mm]

Da ebenfalls  [mm] $\mu_{1}(A \cap [/mm] B ) = [mm] \mu_{2}(A \cap [/mm] B )$ nach Voraussetzung gilt… solltest du vielleicht noch erwähnen.


> Es  ist [mm]\Omega = \bigcup\limits_{i = 1}^{\infty} A_{i} \cup \left ( \bigcup\limits_{i = 1}^{\infty} A_{i} \right )^{c}[/mm]

Das ist hier total unnötig…

Nach Voraussetzung ist [mm] $A_i \in D_A$, [/mm] daraus folgt:

[mm] $\mu_1\left(A \cap \bigcup_{i=1}^\infty A_i\right) [/mm] = [mm] \mu_1\left(\bigcup_{i=1}^\infty (A \cap A_i)\right) [/mm] = [mm] \summe_{i=1}^\infty \ldots [/mm] = [mm] \ldots [/mm] = [mm] \mu_2\left(A \cap \bigcup_{i=1}^\infty A_i\right)$ [/mm]

Füll die [mm] \ldots [/mm] mal selbst.

Gruß,
Gono

Bezug
                                
Bezug
Dynkin- System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Mi 13.05.2020
Autor: NathanR


> > Es  ist [mm]\Omega = \bigcup\limits_{i = 1}^{\infty} A_{i} \cup \left ( \bigcup\limits_{i = 1}^{\infty} A_{i} \right )^{c}[/mm]
>  
> Das ist hier total unnötig…
>  
> Nach Voraussetzung ist [mm]A_i \in D_A[/mm], daraus folgt:
>  
> [mm]\mu_1\left(A \cap \bigcup_{i=1}^\infty A_i\right) = \mu_1\left(\bigcup_{i=1}^\infty (A \cap A_i)\right) = \summe_{i=1}^\infty \ldots = \ldots = \mu_2\left(A \cap \bigcup_{i=1}^\infty A_i\right)[/mm]
>  
> Füll die [mm]\ldots[/mm] mal selbst.
>  
> Gruß,
>  Gono



Ah, jetzt sehe ich's.

Wir haben dann

[mm] $\mu_1\left(A \cap \bigcup_{i=1}^\infty A_i\right) [/mm] = [mm] \mu_1\left(\bigcup_{i=1}^\infty (A \cap A_i)\right) [/mm] = [mm] \summe_{i=1}^\infty \mu_{1}(A \cap A_i) \overset{A_{i} \in D_{A}}{\underset{\text{}}{=}} \summe_{i=1}^\infty \mu_{2}(A \cap A_i) [/mm] = [mm] \mu_2\left(\bigcup_{i=1}^\infty (A \cap A_i)\right) [/mm]  = [mm] \mu_2\left(A \cap \bigcup_{i=1}^\infty A_i\right)$ [/mm]



Also gilt [mm] $\bigcup_{i=1}^\infty A_i \in D_{A}$ [/mm]


Dankeschön für die Hilfe!

Ich suche nun nach einem Beispiel zur b) und zum zweiten Teil der a).

Falls ich nach längerer Zeit kein Beispiel finde, melde ich mich evt. noch mal.


Schönen Abend noch,

Nathan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]