matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenE-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - E-Funktion
E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 So 06.12.2009
Autor: coucou

Aufgabe
Ein Skigelände hat ein Profi, das durch den Graphen der Funktion f mit f(x) = 0,54 * [mm] e^{-x²}, [/mm] x und f(x) in Metern, im Maßstab 1: 4000 beschrieben werden kann.
a) Skizzieren Sie das Profil des Geländes im Maßstab 1:5. Wie groß ist das durchschnittliche Gefälle der Piste vom Gipfel bis zum Ende?
b)Untersuchen Sie, bis zu welchem Punkt das Gelände laufend steiler wird.
c) Kann eine Schneeraupe, die maximal 30° Steigung überwinden kann, das Gelände pflegen?

Hallo!

zu a)
Wenn ich das im Maßstab 1:5 zeichnen soll, wird das dann nicht riesig? heißt das dann nicht, dass 5 Meter in der Natur 1cm in meinem Heft ist?

zu b)
Die Steigung gibt mir ja die 1. Ableitung an.
die wäre ja 0,54 * [mm] e^{-x²}* [/mm] 2x
So, was bringt mir das allerdings jetzt? Wie krieg ich denn die Steigung im DURCHSCHNITT?

zu c)
Da muss man doch einfach nur gucken, ob die Steigung unter 0,3 liegt oder?
Tut sie ja nicht bei 0,54 * ... oder ?

Danke,
lg!

        
Bezug
E-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 So 06.12.2009
Autor: qsxqsx

Ein paar Inputs:

-Das ist schon ein ziemlich "kleiner" masstab...ich kanns dir nicht sagen...
- Muss bei der Aufgabe nicht noch angegeben werden wo das Skigelände Anfängt und Aufhört...?
- Die Ableitung ist noch falsch (fehlr noch ein minus, oder?)
- 0.3 Steigung ist nicht gleich 30° Steigung in Winkel



Bezug
        
Bezug
E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 So 06.12.2009
Autor: Kroni

Hi,

> Ein Skigelände hat ein Profi, das durch den Graphen der
> Funktion f mit f(x) = 0,54 * [mm]e^{-x^2},[/mm] x und f(x) in
> Metern, im Maßstab 1: 4000 beschrieben werden kann.
>  a) Skizzieren Sie das Profil des Geländes im Maßstab
> 1:5. Wie groß ist das durchschnittliche Gefälle der Piste
> vom Gipfel bis zum Ende?
>  b)Untersuchen Sie, bis zu welchem Punkt das Gelände
> laufend steiler wird.
>  c) Kann eine Schneeraupe, die maximal 30° Steigung
> überwinden kann, das Gelände pflegen?
>  Hallo!
>  
> zu a)
>  Wenn ich das im Maßstab 1:5 zeichnen soll, wird das dann
> nicht riesig? heißt das dann nicht, dass 5 Meter in der
> Natur 1cm in meinem Heft ist?

Ja. Massstab 1:5 heisst, dass 1 Meter in deinem Heft 5 Meter in der Realitaet sind. Du musst dann aber noch aufpassen, dass deine Funktion ja schon einen Massstab aufgedrueckt bekommen hat: 1 Meter deiner Funktion entsprechen in der Realitaet 4000 Meter, d.h. das musst du auch nochmal beruecksichtigen.
Wenn ichs mir gerade ueberlege, sehe ich ja, dass dein Berg bei $x=0$ in etwa [mm] $0.5\,$m [/mm] ist, d.h. [mm] $2000\,$m [/mm] hoch. wenn ich jetzt das 1:5 auf die reale Hoehe berechnen wuerde, waere man ja bei knapp [mm] $400\,$m [/mm] Hoehe, das klingt nach sehr viel....
Deshalb wuerde ich den Massstab 1:5 mal in der Hinsicht deuten, dass 5 Meter deiner Funktion 1 Meter in deinem Heft entsprechen, und dann kommt man auf plausible groessen, die gezeichnet werden sollen.

>  
> zu b)
>  Die Steigung gibt mir ja die 1. Ableitung an.
>  die wäre ja 0,54 * [mm]e^{-x²}*[/mm] 2x
>  So, was bringt mir das allerdings jetzt? Wie krieg ich
> denn die Steigung im DURCHSCHNITT?

Naja, nehmen wir an, du startest von einem Punkt [mm] $(x_0,y_0)$ [/mm]  und willst zum naechsten Punkt [mm] $(x_1,y_1)$. [/mm] Da willst du jetzt wissen, wie die mittlere Steigung ist, d.h. du magst die Steigung ganz grob abschaetzen. Wie haettest du das in der 8. Klasse gemacht, als du noch keine Differentialrechnung kanntest? Denk mal in Richtung Gerade....

>  
> zu c)
>  Da muss man doch einfach nur gucken, ob die Steigung unter
> 0,3 liegt oder?
>  Tut sie ja nicht bei 0,54 * ... oder ?

Nein. nicht ganz, s.h. mein Vorredner:

Wenn dort nach einer Steigung von [mm] $30^\circ$ [/mm] gefragt ist, dann hat das erstmal nichts mit einer Steigung von $f'(x)=0.3$ zu tun. Zeichne dir mal eine Gerade, die mit der x-Achse einen Winkel von [mm] $30^\circ$ [/mm] einschliesst (denn das ist mit der Steigung von [mm] $30^\circ$ [/mm] gemeint). Dann versuche mal, mit Hilfe von [mm] $m=\frac{\Delta y}{\Delta x}$ [/mm] und dem Tangens die "richtige" Steigung $m=f"(x)$ auszurechnen. Dann rechne die [mm] $30^\circ$ [/mm] in eine Steigung um, die du mit $f'(x)$ vergleichen kannst, und dann kannst du $f'(x)$ mit $m$ gleichsetzen und gucken, was rauskommt.
Aber selbst, wenn du die Steigung als $m=0.3$ waehlen wuerdest, wuerde dein Argument erstmal nicht zaehlen, zumindest nicht sofort, ohne Rechnung, da ja deine Ableitung [mm] $f'(x)=0.54\cdot [/mm] 2x [mm] \cdot \exp(-x^2)$ [/mm] ist, und die $e$-Funktion den linearen Term schnell gegen Null drueckt.

LG

Kroni

>  
> Danke,
> lg!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]