matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieE[X-Y] bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - E[X-Y] bestimmen
E[X-Y] bestimmen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E[X-Y] bestimmen: Erklärung, Tipp
Status: (Frage) beantwortet Status 
Datum: 21:53 Do 01.07.2010
Autor: kegel53

Aufgabe
Seien X und Y Zufallsvariablen mit P[X=Y]=1.
Ist dann E[X-Y]=0?

Tag Leute,
wieder ne kurze Frage, die mir nicht so ganz 100% klar ist.
P[X=Y]=1 heißt doch, dass X und Y die gleiche Verteilung haben oder was kann ich daraus ableiten??

Dann ist E[X-Y]=E[X]-E[Y]=0

Kann ich das dann so begründen?

        
Bezug
E[X-Y] bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Do 01.07.2010
Autor: Gonozal_IX

Huhu,

> Dann ist E[X-Y]=E[X]-E[Y]=0

wer sagt dir überhaupt, dass X und Y einen Erwarungswert besitzen? ;-)
Insofern geht das so nur bedingt.

Beweise es lieber über die Definition des Erwartungswerts, die lautet wie?

MFG,
Gono.

Bezug
                
Bezug
E[X-Y] bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Do 01.07.2010
Autor: kegel53

Okay also nur damit ichs auch richtig verstanden:
Falls der Erwartunsgwert von X und Y existiert, sagt mir P[X=Y]=1, dass X und Y die gleiche Verteilung haben und mit der Gleichung E[X-Y]=E[X]-E[Y]=0 bin ich dann fertig, richtig??

Okay wenn ich das ganze über die Definition angehe, dann gilt:

[mm] E[X-Y]=\sum_{k\in{(X-Y)}} k\cdot{}P[X-Y=k]=0\cdot{1}=0 [/mm]

Aber woher weiß ich, dass X und Y diskrete ZV sind?
Und ist auch wirklich das einzige Element aus X-Y gerade 0?
Besten Dank schon mal.

Bezug
                        
Bezug
E[X-Y] bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Do 01.07.2010
Autor: Gonozal_IX


> Okay also nur damit ichs auch richtig verstanden:
>  Falls der Erwartunsgwert von X und Y existiert, sagt mir
> P[X=Y]=1, dass X und Y die gleiche Verteilung haben und mit
> der Gleichung E[X-Y]=E[X]-E[Y]=0 bin ich dann fertig,
> richtig??

Hm, theoretisch ja, die Gleichung brauchst du aber gar nicht.

> Okay wenn ich das ganze über die Definition angehe, dann
> gilt:
>  
> [mm]E[X-Y]=\sum_{k\in{(X-Y)}} k\cdot{}P[X-Y=k]=0\cdot{1}=0[/mm]

Das ist nur der Spezialfall für diskrete ZV wie du richtig erkannt hast.

Allgemein gilt doch $E[X] = [mm] \integral_{\Omega}Xd\IP$ [/mm]

Wende das mal auf X-Y an und zerlege das Integral in die Mengen [mm] $\{X=Y\}$ [/mm] und [mm] $\{X\not= Y\}$ [/mm]

MFG,
Gono.

Bezug
                                
Bezug
E[X-Y] bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Do 01.07.2010
Autor: kegel53

Okay dann weiß ich Bescheid, vielen Dank euch beiden!!

Bezug
                        
Bezug
E[X-Y] bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 01.07.2010
Autor: abakus


> Okay also nur damit ichs auch richtig verstanden:
>  Falls der Erwartunsgwert von X und Y existiert, sagt mir
> P[X=Y]=1, dass X und Y die gleiche Verteilung haben und mit

Hallo,
"die gleiche Verteilung" ist viel zu lasch.
P[X=Y]=1 heißt, dass bei einer beliebigen Durchführung eines Zufallsexperiments das Ereignis, dass die beiden Zufallsgrößen X und Y "zufällig" den gleichen Wert annehmen, die Wahrscheinlichkeit 1 hat und somit ein sicheres Ereignis ist.
Somit ist es sicher, dass die Differenz der Werte X und Y Null ist

> der Gleichung E[X-Y]=E[X]-E[Y]=0 bin ich dann fertig,
> richtig??
>  
> Okay wenn ich das ganze über die Definition angehe, dann
> gilt:
>  
> [mm]E[X-Y]=\sum_{k\in{(X-Y)}} k\cdot{}P[X-Y=k]=0\cdot{1}=0[/mm]
>  
> Aber woher weiß ich, dass X und Y diskrete ZV sind?
>  Und ist auch wirklich das einzige Element aus X-Y gerade
> 0?
>  Besten Dank schon mal.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]