matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEbene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Ebene
Ebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene: aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:25 So 13.05.2007
Autor: sky_7

Hi!
Ich hab ne Frage und zwar ich hab eine Gleichung der Ebene in Normalenform E: (vektor X - (1,2,-1)). (2k,4,3-k)=0 alle diese Ebenen schneiden sich in einer Geraden g. wir sollen diese Gleichung der Geraden bestimmen.
Ich hab mir gedacht dass  normalenform -> koordinatengleichung schreiben
aber ich komm nicht weiter
kann jemand bitte mir helfen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.Gruss

        
Bezug
Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 So 13.05.2007
Autor: angela.h.b.


> Ich hab ne Frage und zwar ich hab eine Gleichung der Ebene
> in Normalenform E: (vektor X - (1,2,-1)). (2k,4,3-k)=0 alle
> diese Ebenen schneiden sich in einer Geraden g. wir sollen
> diese Gleichung der Geraden bestimmen.
>  Ich hab mir gedacht dass  normalenform ->

> koordinatengleichung schreiben
>  aber ich komm nicht weiter

Hallo,

[willkommenmr].

Dein Problem ist im Moment also, daß Du aus [mm] (\vec{x}-\vektor{1 \\ 2\\-1})\vektor{2k \\ 4\\3-k}=0 [/mm] eine Koordinatenform machen willst.

Mit [mm] \vec{x}:=\vektor{x_1 \\ x_2\\x_3} [/mm]

erhältst Du

[mm] 0=(\vektor{x_1 \\ x_2\\x_3}-\vektor{1 \\ 2\\-1})\vektor{2k \\ 4\\3-k} =\vektor{x_1 \\ x_2\\x_3}*\vektor{2k \\ 4\\3-k} [/mm] - [mm] \vektor{1 \\ 2\\-1}* \vektor{2k \\ 4\\3-k} [/mm]

Die beiden Produkte sind Skalarprodukte, also erhältst Du

[mm] ...=2kx_1+... [/mm] -(1*2k + ...)

Gruß v. Angela

Bezug
                
Bezug
Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 So 13.05.2007
Autor: sky_7

ok ,das hab ich gemacht ,aber wie kann ich die Gleichung der Gerade g bestimmen ??

Bezug
                        
Bezug
Ebene: einsetzen
Status: (Antwort) fertig Status 
Datum: 22:17 So 13.05.2007
Autor: Loddar

Hallo [mm] sky_7 [/mm] !


Wähle Dir zwei unterschiedliche Parameter [mm] $k_1 [/mm] \ [mm] \not= [/mm] \ [mm] k_2$ [/mm] und setze dann eine Ebenengleichung [mm] $E_{k_1}$ [/mm] ind die andere [mm] $E_{k_2}$ [/mm] ein.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]