matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEbene bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Ebene bestimmen
Ebene bestimmen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene bestimmen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 14:24 Sa 07.02.2009
Autor: DerdersichSichnennt

Aufgabe
Man gebe die Ebene an (in Koordinatenform), die zu den Vektoren
[mm] \vec{a} [/mm] = [mm] -3\vec{e}_{x} -2\vec{e}_{y} +2\vec{e}_{z} [/mm] und [mm] \vec{b} [/mm] = [mm] \vec{e}_{x} [/mm] - [mm] 3\vec{e}_{y} -8\vec{e}_{z} [/mm] parallel ist und den Punkt P=(1;1,-3) enthält.

Schönen guten Tag.

Diese Aufgabe erschließt sich mir in keinster Weise...
Ich wäre sehr dankbar, wenn mir jemand mit einem Ansatz weiterhelfen könnte. Ich vermute mal, dass ich (tschuldigung klingt doof) irgendwas mit dem Normalvektor machen muss... ich bin ziemlich ratlos.

Schonmal vielen Danke und schöne Grüße,

Sich

        
Bezug
Ebene bestimmen: Normalenvektor
Status: (Antwort) fertig Status 
Datum: 14:29 Sa 07.02.2009
Autor: Loddar

Hallo Sich!


Mit den beiden gegebenen Vektoren [mm] $\vec{a}$ [/mm] und [mm] $\vec{b}$ [/mm] hast Du quasi die beiden Richtungsvektoren der Ebene E gegeben.

Um hier nun den Normalenvektor zu finden, kannst Du entweder das MBVektorprodukt [mm] $\vec{a}\times\vec{b}$ [/mm] berechnen oder mittels MBSkalarprodukt vorgehen.

Hier muss gelten:
[mm] $$\vec{a}*\vec{n} [/mm] \ = \ [mm] \vektor{-3\\-2\\1}*\vektor{x\\y\\z} [/mm] \ = \ 0$$
[mm] $$\vec{b}*\vec{n} [/mm] \ = \ [mm] \vektor{1\\-3\\-8}*\vektor{x\\y\\z} [/mm] \ = \ 0$$

Gruß
Loddar


Bezug
                
Bezug
Ebene bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Sa 07.02.2009
Autor: DerdersichSichnennt

Vielen Dank für deine Hilfe!

Ich habe nun den Normalenvektor, mittels Vektorprodukt bestimmt:

[mm] \vec{n} [/mm] = [mm] \vektor{2 \\ -2 \\ 1} [/mm]

Ist das weitere Vorgehen nun richtig?

Ausgehend vom [mm] \vec{n} [/mm] und des enthaltenen Punktes:

E : 2x - 2y +z = 1*1*-3 <=> E : 2x - 2y +z +3 = 0

Das kann ich mir irgendwie nicht vorstellen...

Grüße Sich

Bezug
                        
Bezug
Ebene bestimmen: Normalenvektor stimmt
Status: (Antwort) fertig Status 
Datum: 17:08 Sa 07.02.2009
Autor: Loddar

Hallo Sich!


Das Ergebnis für den Normalenvektor ist korrekt.

Allerdings stimmt das Absolutglied (bzw. dessen Weg) nicht.

Hier musst Du berechnen:
[mm] $$\vec{n}*\vec{p} [/mm] \ = \ [mm] \vektor{2\\-2\\1}*\vektor{1\\1\\-3} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                                
Bezug
Ebene bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Sa 07.02.2009
Autor: DerdersichSichnennt

OK, vielen Dank nochmal!

So kommt man dann auf: 2*1-2*1+1*(-3) = -3

Und das ergibt: E: 2x-2y+z = -3 <=> E: 2x-2y+z+3 = 0

Grüße
Sich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]