Ebene bilden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:25 So 29.09.2013 | Autor: | Asena |
Aufgabe | Bestimmen sie eine Gleichung der ebene e, die g enthält und zu h parallel ist. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Die Geraden g:Vektor x= (6/1/3)+r*(2/-/-2) und h:Vektor x= (4/5/-3)+s*(0/1/2) sind zueinander windschief.
Da man aus zwei windschiefe Geraden keine ebene bilden kann, weiß ich gerade nicht weiter wie ich vorgehen soll.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:30 So 29.09.2013 | Autor: | abakus |
> Bestimmen sie eine Gleichung der ebene e, die g enthält
> und zu h parallel ist.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Die Geraden g:Vektor x= (6/1/3)+r*(2/-/-2) und h:Vektor x=
> (4/5/-3)+s*(0/1/2) sind zueinander windschief.
> Da man aus zwei windschiefe Geraden keine ebene bilden
> kann, weiß ich gerade nicht weiter wie ich vorgehen soll.
Hallo,
wenn die Ebene alle Punkte von g enthalten soll, braucht sie den Punkt (6|1|3) und als einen ihrer Spannvektoren auch den Richtungsvektor von g.
Als zweiten Spannvektor nimm den Richtungsvektor von h.
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:40 So 29.09.2013 | Autor: | Asena |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Aber dann ist die ebene doch nicht parallel zu h oder?
Also ich hab in den Lösungen die ebenengleichung stehen, die lautet e: 2x - 2y + z = 13.
Wenn ich die eben so aufstelle dass es den Spannbetone von g und h enthält kommt die ebene 3x-4y-2z raus.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:52 So 29.09.2013 | Autor: | abakus |
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Aber dann ist die ebene doch nicht parallel zu h oder?
Nimm dir mal eine Streichholzschachtel. Zeichne auf ihrer Oberseite einen Punkt in die Mitte und von dort aus einen Pfeil zum rechten Rand (Das ist Stützpunkt von g mit Richtungsvektor.)
Drehe jetzt die Schachtel auf die Rückseite und zeichne vom dortigen Mittelpunkt einen Pfeil in DIAGONALER Richtung (das soll h sein).
Die gesamte Unterseite (und damit auch die Gerade h) ist parallel zur oberen Seitenfläche. Wenn du nun deinen Richtungsvektor von h von der Unterseite auch als Spannvektor auf der Oberseite verwendest (Pfeil vom Mittelpunkt in Diagonaler Richtung), spannst du mit diesen beiden Vektoren eine Parallelebene (obere Fläche) zur Gerade h (Gerade auf der parallelen unteren Fläche) auf.
> Also ich hab in den Lösungen die ebenengleichung stehen,
> die lautet e: 2x - 2y + z = 13.
> Wenn ich die eben so aufstelle dass es den Spannbetone von
> g und h enthält kommt die ebene 3x-4y-2z raus.
|
|
|
|