matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEbene durch drei Punkte (2)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Ebene durch drei Punkte (2)
Ebene durch drei Punkte (2) < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene durch drei Punkte (2): richtig gerechnet?
Status: (Frage) beantwortet Status 
Datum: 00:46 Do 07.08.2008
Autor: BlubbBlubb

Aufgabe
Gegeben seien die Punkte [mm] P_1=(1,0,0), P_2=(0,1,0),P_3=(0,0,1). [/mm]

a)Man gebe die Parameterform, die parameterfreie Form und die Hessesche Normalform der Ebene an, die durch die Punkte [mm] P_1,P_2,P_3 [/mm] geht.

b)Man bestimme den Abstand des Punktes [mm] P_0=(1,2,3) [/mm] von der Ebene.

c)Man berechne den Durchstoßpunkt einer Geraden, die druch [mm] P_0 [/mm] geht und senkrecht auf der Ebene steht.

meine vorgehensweise:

zu a):

Parameterform:

E: [mm] \vec{x}=\vektor{1 \\ 0 \\ 0} [/mm] + [mm] u*\vektor{-1 \\ 1 \\ 0} +v*\vektor{-1 \\ 0 \\ 1} [/mm]

Vorraussetzung: [mm] (\vec{P_2}-\vec{P_1})\times(\vec{P_3}-\vec{P_1})\not=0 [/mm]

[mm] \vektor{-1 \\ 1 \\0}\times\vektor{-1 \\ 0 \\ 1}=\vektor{1 \\ 1 \\ 1} [/mm]


Parameterform [mm] \rightarrow [/mm] Parameterfreie Form:

[mm] \vektor{1 \\ 1 \\ 1}*\vektor{x_1 \\ x_2 \\ x_3}=\vektor{1 \\ 0 \\ 0}*\vektor{1 \\ 1 \\ 1} [/mm]

E: [mm] x_1+x_2+x_3=1 [/mm]


Koordinatendarstellung in Hessesche Normalform:

[mm] \vec{n}=\vektor{1 \\ 1 \\ 1} [/mm]

[mm] |\vec{n}|=\wurzel{3} [/mm]


[mm] HNF:\bruch{x_1}{\wurzel{3}}+\bruch{x_2}{\wurzel{3}}+\bruch{x_3}{\wurzel{3}}=\bruch{1}{\wurzel{3}} [/mm]


zu b)

Abstand von [mm] P_0 [/mm] zu E: [mm] A=|\vec{p}*\vec{n}_{HNF}-k| [/mm]

[mm] \vec{p}*\vec{n}=\vektor{1 \\ 2 \\ 3}*\vektor{\bruch{1}{\wurzel{3}} \\ \bruch{1}{\wurzel{3}} \\ \bruch{1}{\wurzel{3}}}=\bruch{6}{\wurzel{3}} [/mm]

[mm] A=|\bruch{6}{\wurzel{3}}-\bruch{1}{\wurzel{3}}|=\bruch{5}{\wurzel{3}} [/mm]

[mm] \vec{p}*\vec{n}>k \rightarrow P_0 [/mm] liegt auf der Nullpunkt nicht enthaltenden Seite.


Zu c)

Geradengleichung:

[mm] \vec{x}=\vektor{1 \\ 2 \\ 3}+t*\vektor{1 \\ 1 \\ 1} [/mm]

Durchstoßpunkt:

[mm] \vec{x_0}=\vektor{1 \\ 2 \\ 3}+t_0*\vektor{1 \\ 1 \\ 1} [/mm]

[mm] t_0=\bruch{1-\vektor{1 \\ 2 \\3}*\vektor{1 \\ 1 \\ 1}}{\vektor{ 1 \\ 1 \\ 1}*\vektor{ 1 \\ 1 \\ 1}}=\bruch{-5}{3} [/mm]


[mm] \vec{x_0}=\vektor{1 \\ 2 \\ 3}-\bruch{5}{3}*\vektor{1 \\ 1 \\ 1}=\vektor{\bruch{-2}{3} \\ \bruch{1}{3} \\ \bruch{4}{3}} [/mm]

richtig?

        
Bezug
Ebene durch drei Punkte (2): Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Do 07.08.2008
Autor: weduwe

wie gehabt [ok]
aber auch wie gehabt wieder etwas gewöhnungsbedürftig (für mich)

HNF: [mm] \frac{x+y+z-1}{\sqrt{3}}=0 [/mm]

und damit sofort

[mm] d(P_0)=\frac{1+2+3-1}{\sqrt{3}}=\frac{5}{\sqrt{3}} [/mm]

den durchstoßungspunkt schreibt man üblicherweise - bei uns zu hause - so:

[mm] P(-\frac{2}{3}/\frac{1}{3}/\frac{4}{3}) [/mm]

Bezug
                
Bezug
Ebene durch drei Punkte (2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:05 Do 07.08.2008
Autor: BlubbBlubb

nochmals danke fürs durchschauen. deine methode ist auch kürzer und einfach zu merken. ich habe meine methode aus dem buch repetitorium der ingenieurmathematik teil 1, aber ich denke ich werde wohl in zukunft deine anwenden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]