matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungEbenen aufstellen und Kugelsch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Ebenen aufstellen und Kugelsch
Ebenen aufstellen und Kugelsch < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen aufstellen und Kugelsch: Aufstellen einer Ebene,Kugels.
Status: (Frage) beantwortet Status 
Datum: 19:28 Mo 12.09.2005
Autor: Norman

Ich habe Folgendes Problem. Ich habe 2 Geraden, einmal die Gerade g:  [mm] \overrightarrow{x}= \vektor{1 \\ 3\\-7} [/mm] +t [mm] \vektor{1 \\ 1\\4} [/mm] und die Gerade h:  [mm] \overline{x}= \vektor{1 \\ 5\\6} [/mm] +r [mm] \vektor{0 \\ 1\\2} [/mm]

Nun soll ich eine Normalengleichung der Ebene aufstellen welche Gerade g und das gemeinsame Lot von Gerade g und h enthält. Dann soll ich noch die Besonderheit dieser Ebene nennen.

Als zweites soll ich eine Kugelschar  [mm] K_{t} [/mm] aufstellen deren Mittelpunkte auh h liegen und die die Gerade g berühren.Dann noch die Schar mit dem kleinsten Radius bestimmen.

zu 1) Die ersten Richtungsvektor der Ebene habe ich ja bereits gegeben , die ist ja der Vektor der Geraden g. Wie ist das mit dem Lot gemeint ? Sind das Orthogonale Vektoren der Geraden g und h? Falls es jemanden hilft ich  musste vorher die Lage der Geraden bestimmen , sie sind Windschief zueinander.

zu2) Wie bekomme ich denn die Punkte raus wo die Kugel die Gerade g berührt??

Sorry das ich nich mehr weis . Ich wär super dankbar fürn par Ansätze, wir schreiben nämlich bald Klausur und da muss ich noch'n bisschen üben.
Schon mal vielen dank für die Mühe.

Gruß Norman

        
Bezug
Ebenen aufstellen und Kugelsch: Aufgabe 1)
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 12.09.2005
Autor: MathePower

Hallo Norman,

> zu 1) Die ersten Richtungsvektor der Ebene habe ich ja
> bereits gegeben , die ist ja der Vektor der Geraden g. Wie
> ist das mit dem Lot gemeint ? Sind das Orthogonale Vektoren
> der Geraden g und h? Falls es jemanden hilft ich  musste
> vorher die Lage der Geraden bestimmen , sie sind Windschief
> zueinander.

Voraussetzung, daß man ein Lot fällen kann ist im Raum, daß die gegebenen Geraden windschief zueinander sind, also sich nicht schneiden und nicht parallel sind.

Um das gemeinsame Lot zu bestimmen, gehst Du wie folgt vor:

Seien die Geraden [mm]g:\;\overrightarrow x \; = \;\overrightarrow {a_1 } \; + \;s\;\overrightarrow {b_1 } [/mm] und [mm] h:\;\overrightarrow x \; = \;\overrightarrow {a_2 } \; + \;t\;\overrightarrow {b_2 } [/mm] windschief zueinander

Zunächst mal muß das Lot orthogonal zu den Richtungsvektoren der Geraden sein.

Es gilt dann:

[mm] \begin{gathered} \left( {\overrightarrow {a_1 } \; + \;s\;\overrightarrow {b_1 } \; - \;\overrightarrow {a_2 } \; - \;t\;\overrightarrow {b_2 } } \right)\;\overrightarrow {b_1 } \; = \;0 \hfill \\ \left( {\overrightarrow {a_1 } \; + \;s\;\overrightarrow {b_1 } \; - \;\overrightarrow {a_2 } \; - \;t\;\overrightarrow {b_2 } } \right)\;\overrightarrow {b_2 } \; = \;0 \hfill \\ \end{gathered} [/mm]

Hieraus erhältst Du sie Parameter s und t, mit deren Hilfe sich das Lot [mm] {\overrightarrow {a_1 } \; + \;s\;\overrightarrow {b_1 } \; - \;\overrightarrow {a_2 } \; - \;t\;\overrightarrow {b_2 } }[/mm] berechnet.

Gruß
MathePower



Bezug
        
Bezug
Ebenen aufstellen und Kugelsch: Aufgabe 2)
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 12.09.2005
Autor: MathePower

Hallo Norman,

> zu2) Wie bekomme ich denn die Punkte raus wo die Kugel die
> Gerade g berührt??

setze die entsprechende Geradengleichung in die Kugelgleichung ein, und Du erhältst eine quadratische Gleichung. Diese hat in der Regel zwei Lösungen. Fallen diese Lösungen zusammen, so ist die Gerade Tangente an die Kugel.

Gruß
MathePower

Bezug
        
Bezug
Ebenen aufstellen und Kugelsch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mo 12.09.2005
Autor: Norman

Zu ersten habe ich noch eine Frage.
Ich habe jetzt die Parameter s und t in der Form: s= 2t-6   und s= 20t-54 als Beispiel. Jetzt habe ich ja 2 gleichungen , welche muss ich denn nun davon einsetzen oder is es egal wo ich welche einsetzte und nach was sie umgestellt wird?

zu 2) Das Problem ist das ich ja leider die kugelgleichung nicht gegeben habe und somit ja keinen Radius aufstellen kann . Ich meine , ich habe ja keinen weg erstmal irgendwie eine Gleichung aufzustellen.

Sorry wenn ich dich damit nerve aber irgendwie steig ich da jetzt nicht hinter. Vielen dank das du dir die Zeit und Mühe machst mir zu helfen.

Gruß
Norman



Bezug
                
Bezug
Ebenen aufstellen und Kugelsch: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:48 Mo 12.09.2005
Autor: MathePower

Hallo Norman,

> Zu ersten habe ich noch eine Frage.
>  Ich habe jetzt die Parameter s und t in der Form: s= 2t-6  
>  und s= 20t-54 als Beispiel. Jetzt habe ich ja 2
> gleichungen , welche muss ich denn nun davon einsetzen oder
> is es egal wo ich welche einsetzte und nach was sie
> umgestellt wird?

In die Gleichungen sollen die gegebenen Vektoren der Geraden g und h eingesetzt, diese dann skalar mit dem Richtungsvektor [mm]b_{1}[/mm] bzw. [mm]b_{2}[/mm] multipliziert. Dies ergeben nun mal 2 Gleichungen in 2 Unbekannten (s, t).

Die Gleichungen dienen also zur Bestimmung der Unbekannten s und t.

  

> zu 2) Das Problem ist das ich ja leider die kugelgleichung
> nicht gegeben habe und somit ja keinen Radius aufstellen
> kann . Ich meine , ich habe ja keinen weg erstmal irgendwie
> eine Gleichung aufzustellen.

Die Kugelgleichung lautet so:

[mm] \left( {\overrightarrow x \; - \;\overrightarrow m } \right)^2 \; = \;r^2 [/mm]

Als Mittelpunkt nimmst Du dann die Gerade h. Punkte auf der Kugel sollen dann diejenigen der Geraden h sein. Die Gerade berührt die Kugel, wenn die Gerade nur einen Schnittpunkt mit der Kugel hat.

Konkret hast Du dann folgende Gleichung:

[mm]\left( {g\; - \;h} \right)^2 \; = \;\left( {\overrightarrow {a_1 } \; + \;s\;\overrightarrow {b_1 } \; - \;\overrightarrow {a_2 } \; - \;t\;\overrightarrow {b_2 } } \right)^2 \; = \;r^2 [/mm]

Obige Gleichung ausmultipliziert ergibt dann eine quadratische Gleichung:

[mm]a\;s^{2} \; + \;b\;s\; + \;c\; = \;0[/mm]

Diese hat zwei zusammenfallende Lösungen, wenn

[mm]b^{2}\;-\;4\;a\;c\;=\;0[/mm] ist.

Hieraus ergibt sich der Radius der Kugel in Abhängigkeit von t.

Für die Bestimmung des minimalen Radius differenziert man einmal und setzt diese Ableitung gleich 0.

>
> Sorry wenn ich dich damit nerve aber irgendwie steig ich da
> jetzt nicht hinter. Vielen dank das du dir die Zeit und
> Mühe machst mir zu helfen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]