matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeEbenenberechnung v Koordinaten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Ebenenberechnung v Koordinaten
Ebenenberechnung v Koordinaten < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenberechnung v Koordinaten: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:57 Di 25.01.2005
Autor: delete

hey meine Retter,

nächste Woche habe ich eine Klausur zu schreiben in Analysis, da brauch ich eure Hilfe, und dieser Forum wird meine Rettung zu meinem Abschluss... und bitte euch mir zu Helfen den Lösungsweg zu finden...

bedanke mich schon im voraus...

1. Gegeben seien die Punkte P1=(1,0,0), P2=(4,3,0) und P3=(o,5,2). Wie ist die dritte Koordinate p des Punktes P4=(0,0,p) zu wählen, damit alle vier Punkte in einer gemeinsamen Ebene liegen?

mfg

delete

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ebenenberechnung v Koordinaten: Hinweis
Status: (Antwort) fertig Status 
Datum: 13:09 Di 25.01.2005
Autor: Loddar

Hallo delete,

auch Dir hier ein [willkommenmr] !!


> 1. Gegeben seien die Punkte P1=(1,0,0), P2=(4,3,0) und
> P3=(o,5,2). Wie ist die dritte Koordinate p des Punktes
> P4=(0,0,p) zu wählen, damit alle vier Punkte in einer
> gemeinsamen Ebene liegen?

Wo sind denn Deine eigenen Ideen und Lösungsansätze?
Bitte lies' Dir doch einmal unsere Forenregeln durch ...


Einen Tipp kann ich Dir allerdings geben:

Mit den 3 bekannten Punkten kannst Du Dir ja eine Ebenengleichung ermitteln.

Anschließend kannnst Du durch Einsetzen des 4. Punktes in diese Ebenengleichung die gesuchte Größe $p$ ermitteln.

[guckstduhier] ... MBEbene


Versuch' das doch mal und poste denn hier Deine Ergebnisse zur Kontrolle oder stelle hier bitte konkrete Fragen ...


Gruß
Loddar


Bezug
                
Bezug
Ebenenberechnung v Koordinaten: Frage und Idee
Status: (Frage) beantwortet Status 
Datum: 13:32 Di 25.01.2005
Autor: delete

Hey loddar,

ich danke dir für den hinweis, und stelle dir somit meine bisherige lösung zur verfügung,

[mm] \vektor{4 \\ 3 \\ 0} [/mm] - [mm] \vektor{1 \\ 0 \\ 0} [/mm] = [mm] \vektor{3 \\ 3 \\ 0} [/mm]

[mm] \vektor{0 \\ 5 \\ 2} [/mm] - [mm] \vektor{1 \\ 0 \\ 0} [/mm] = [mm] \vektor{-1 \\ 5 \\ 2} [/mm]

dann;

[mm] \vektor{1 \\ 0 \\ 0} [/mm] +   [mm] \lambda [/mm] * [mm] \vektor{3 \\ 3 \\ 0} [/mm] +  [mm] \mu [/mm] * [mm] \vektor{-1 \\ 5 \\ 2} [/mm]

=  [mm] \pmat{ 1 & 3 \lambda & - \mu \\ & 3 \lambda & 5\mu \\ & & 2\mu} [/mm]

nun wie muss ich jetzt vorgehen um "p" bestimmen zu können....

mfg...

delete

Bezug
                        
Bezug
Ebenenberechnung v Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Di 25.01.2005
Autor: Loddar

Hallo delete!


> ich danke dir für den hinweis, und stelle dir somit meine
> bisherige lösung zur verfügung,

[daumenhoch]




$E \ :  \ [mm] \vec{x} [/mm] \ = \ [mm] \vektor{1 \\ 0 \\ 0} [/mm] \ + \ [mm] \lambda [/mm] * [mm] \vektor{3 \\ 3 \\ 0} [/mm] \ +  \ [mm] \mu [/mm] * [mm] \vektor{-1 \\ 5 \\ 2}$ [/mm]
[daumenhoch] Sehr gut ...



Damit unser bestimmter Punkt auch wirklich in der genannten Ebene liegt, muß er auch diese Ebenengleichung erfüllen.

Es muß also gelten:
$ [mm] \vektor{0 \\ 0 \\ p} [/mm] \ = \ [mm] \vektor{1 \\ 0 \\ 0} [/mm] \ + \ [mm] \lambda [/mm] * [mm] \vektor{3 \\ 3 \\ 0} [/mm] \ +  \ [mm] \mu [/mm] * [mm] \vektor{-1 \\ 5 \\ 2}$ [/mm]

Aus den ersten beiden Zeilen dieser Gleichung kannst Du nun ein Gleichungssystem mit 2 Unbekannten ermitteln für [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] und anschließend dann $p$.

Kommst Du nun alleine weiter?


Loddar


Bezug
                                
Bezug
Ebenenberechnung v Koordinaten: antwort
Status: (Frage) beantwortet Status 
Datum: 13:57 Di 25.01.2005
Autor: delete

hey loddar,

ist dann "p" = [mm] 2\mu [/mm] oder wie?

denn das würde dann zu dem schluß führen, dass p = 0 wäre, da [mm] \mu [/mm] = 0 ist...

mfg

delete

Bezug
                                        
Bezug
Ebenenberechnung v Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Di 25.01.2005
Autor: e.kandrai


> ist dann "p" = [mm]2\mu[/mm] oder wie?

Richtig.
Du darfst nicht vergessen, was die Parameter in so ner Ebenengleichung bedeuten: würden beide Parameter [mm]\mu[/mm] und [mm]\lambda[/mm] alle Werte aus [mm]\IR[/mm] durchlaufen, dann würde man auf die Art jeden Punkt der Ebene "treffen".

> denn das würde dann zu dem schluß führen, dass p = 0 wäre,
> da [mm]\mu[/mm] = 0 ist...

Da komm ich nicht ganz mit; warum soll [mm]\mu=0[/mm] sein? Das [mm]\mu[/mm] kann alle Werte aus [mm]\IR[/mm] durchlaufen.

Nimm dir mal die ersten beiden Zeilen aus der Ebenengleichung, und löse dieses LGS, so wie Loddar es vorgeschlagen hat:

[mm]0=1+3\lambda - \mu[/mm]
[mm]0=0+3\lambda + 5\mu[/mm]

Damit bekommst du Werte für [mm]\lambda[/mm] und [mm]\mu[/mm].
Und damit der Punkt [mm]P(0/0/p)[/mm] auf der Ebene liegt, muss die letzte Gleichung [mm]p=0+0\lambda + 2\mu[/mm] auch erfüllt sein.

Bezug
                                                
Bezug
Ebenenberechnung v Koordinaten: Super..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Di 25.01.2005
Autor: delete

danke leuts...

habt mir sehr viel geholfen...

muchas gracias...



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]