matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Ebenengleichung
Ebenengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Mi 18.04.2007
Autor: aleskos

Aufgabe
Geg:

[mm] E:\vec{x}=\pmat{ 1 \\ 2 \\ 3 }+m\pmat{ -2 \\ -3 \\ -4 }+n\pmat{ 4 \\ 0 \\ -2 } [/mm]
.
.
[mm] 2x_{1}-7x_{2}+4x_{3}=0 [/mm]

und Punkt M (5/-5/3)

Ges: parallele Ebene zu [mm] E:\vec{x} [/mm] durch den Punkt M

Hallo erstmal,

ich gehe eine Aufgabe nocheinmal ganz durch, weil die Ergebnise nicht übereinstimmen.
Bei obenstehenden Teilaufgabe bin ich mir nicht sicher, ob ich es richtig gemacht habe.
Und zwar, nahm ich M als Aufpunkt und diesen mit Skalarprodukt zu [mm] (m\pmat{ -2 \\ -3 \\ -4 }+n\pmat{ 4 \\ 0 \\ -2 }) [/mm]


es kommt im endeffekt [mm] -2x_{1}+7x_{2}-4x_{3}=37 [/mm] raus
kann es so stimmen?
Geht dann die neue Ebene durch M und gleichzeitig [mm] \parallel [/mm] zu [mm] E:\vec{x} [/mm]

gruß
aleskos

        
Bezug
Ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mi 18.04.2007
Autor: Bastiane

Hallo aleskos!

> Geg:
>  
> [mm]E:\vec{x}=\pmat{ 1 \\ 2 \\ 3 }+m\pmat{ -2 \\ -3 \\ -4 }+n\pmat{ 4 \\ 0 \\ -2 }[/mm]
>  
> .
>  .
>  [mm]2x_{1}-7x_{2}+4x_{3}=0[/mm]
>  
> und Punkt M (5/-5/3)
>  
> Ges: parallele Ebene zu [mm]E:\vec{x}[/mm] durch den Punkt M
>  Hallo erstmal,
>  
> ich gehe eine Aufgabe nocheinmal ganz durch, weil die
> Ergebnise nicht übereinstimmen.
>  Bei obenstehenden Teilaufgabe bin ich mir nicht sicher, ob
> ich es richtig gemacht habe.
>  Und zwar, nahm ich M als Aufpunkt und diesen mit
> Skalarprodukt zu [mm](m\pmat{ -2 \\ -3 \\ -4 }+n\pmat{ 4 \\ 0 \\ -2 })[/mm]

(diese Methode verstehe ich gerade nicht so ganz, deswegen stelle ich die Frage mal auf halbbeantwortet...)

> es kommt im endeffekt [mm]-2x_{1}+7x_{2}-4x_{3}=37[/mm] raus
>  kann es so stimmen?

Ja, das sieht gut aus. Wenn die Richtungsvektoren gleich sind von der einen und der anderen Ebene, dann sind die Ebenen ja parallel. Und an deiner Koordinatengleichung kannst du ja direkt den Normalenvektor ablesen, einmal [mm] \vektor{2\\-7\\4} [/mm] und einmal [mm] \vektor{-2\\7\\-4} [/mm] - und diese beiden sind linear abhängig, also sind beide Ebenen parallel.

>  Geht dann die neue Ebene durch M und gleichzeitig
> [mm]\parallel[/mm] zu [mm]E:\vec{x}[/mm]

Genau - denn wenn es nur hieße, dass die Ebene parallel sein soll, gäbe es unendlich viele Möglichkeiten (als einfachste würde man den Nullvektor als Stützvektor wählen). :-)

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mi 18.04.2007
Autor: M.Rex

Hallo.

Mach es dir doch ganz einfach:

[mm]E:\vec{x}=\pmat{ 1 \\ 2 \\ 3 }+m\pmat{ -2 \\ -3 \\ -4 }+n\pmat{ 4 \\ 0 \\ -2 }[/mm]

Und die Neue Ebene soll durch m gehen

Also nimm [mm] \vec{m} [/mm] als Stützpunkt.

Somit:

[mm] E:\vec{x}=\pmat{ 5 \\ -5 \\ 3 }+m\pmat{ -2 \\ -3 \\ -4 }+n\pmat{ 4 \\ 0 \\ -2 } [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]