matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenenschar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Ebenenschar
Ebenenschar < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenschar: Lage der Ebenen zueinander
Status: (Frage) beantwortet Status 
Datum: 15:25 So 29.01.2017
Autor: begker1

Aufgabe
Gegeben ist die Ebenenschar (a+2)x+(2-a)z=a+1
Untersuchen Sie die Lage der Ebenen der Schar zueinander.


Meine Überlegung war hier zunächst die Parallelität zu prüfen, indem ich für a zwei verschieden Werte annehme. Wenn die beiden entstehenden Normalenvektoren dann linear abhängig sind, wäre dies ein Hinweis darauf, dass die Ebenen der Schar alle zueinander parallel sind.
für a=2 ergibt sich der Normalenvektor [mm] \vektor{4\\ 0\\0}, [/mm] für a=3 den Normalenvektor [mm] \vektor{5\\ 0\\-1}. [/mm]
Die Vektoren der Schar sind also nicht parallel.
Sie sind auch nicht senkrecht zueinander, weil das Skalarprodukt der entstehenden Normalenvektoren nicht 0 ist.
Die Ebenen der Schar sind also windschief zueinander.
Ist dieses beispielhafte Vorgehen ausreichend, oder müsste ich hier anders vorgehen?


        
Bezug
Ebenenschar: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 15:38 So 29.01.2017
Autor: M.Rex

Hallo

Deine Grundidee ist ja schon gut, die Ausführungen dann weniger.

Du hast korrekterweise mit [mm] \vec{n}=\vektor{a+2\\0\\2-a} [/mm] einen Normalenvektor der Ebene identifiziert.
Die Frage ist nun, ob es einen Wert für a geben kann, so dass die Normalenvektoren parallel sind, also ein Wert für a, so dass es einen Faktor k gibt, so dass  [mm] \vektor{a+2\\0\\2-a}=k\cdot\vektor{a+2\\0\\2-a} [/mm]
Das führt zu folgendem LGS:
[mm] \vmat{a+2=k\cdot(a+2)\\0=k\cdot0\\2-a=k\cdot(2-a)} [/mm]
[mm] \Leftrightarrow\vmat{a+2=ka+2k\\0=0\\2-a=2k-ka} [/mm]
Addierst du nun Gleichung 1 und 3, bekommst du
[mm] \Leftrightarrow\vmat{a+2=ka+2k\\0=0\\4=4k} [/mm]
Das führt zu k=1, und das, über Gleichung 1 dann zu a+2=2-a. Diese Gleichung ist für a=0 erfüllt. Für a=0 (und nur dann) hast du also parallele Normalenvektoren.

Überlege nun mal, was das dann im Bezug auf die Ebenen bedeutet, ob sie dann echt parallel oder identisch sind.

Marius

Bezug
                
Bezug
Ebenenschar: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 15:48 So 29.01.2017
Autor: abakus


>  Für a=0
> (und nur dann) hast du also parallele Normalenvektoren.

Zum zueinander parallel sein gehören immer zwei...
Sie Ebene hat für a=0 genau wie für jedes andere a einen Normalenvektor. Fertig.
Es geht doch wohl darum, ob es zwei verschiedene Werte [mm] $a_1$ [/mm] und [mm] $a_2$ [/mm] gibt,  sodass
[mm] $\vektor{a_1+2\\0\\2-a_1} [/mm] $ ein Vielfaches des Vektors [mm] $\vektor{a_2+2\\0\\2-a_2} [/mm] $ ist.

Bezug
        
Bezug
Ebenenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Mo 30.01.2017
Autor: Diophant

Hallo,

> Gegeben ist die Ebenenschar (a+2)x+(2-a)z=a+1
> Untersuchen Sie die Lage der Ebenen der Schar zueinander.

>

> Meine Überlegung war hier zunächst die Parallelität zu
> prüfen, indem ich für a zwei verschieden Werte annehme.
> Wenn die beiden entstehenden Normalenvektoren dann linear
> abhängig sind, wäre dies ein Hinweis darauf, dass die
> Ebenen der Schar alle zueinander parallel sind.
> für a=2 ergibt sich der Normalenvektor [mm]\vektor{4\\ 0\\0},[/mm]
> für a=3 den Normalenvektor [mm]\vektor{5\\ 0\\-1}.[/mm]
> Die
> Vektoren der Schar sind also nicht parallel.

Ja, und das reicht als Gegenbeispiel natürlich aus, da braucht es kein LGS.

> Sie sind auch nicht senkrecht zueinander, weil das
> Skalarprodukt der entstehenden Normalenvektoren nicht 0
> ist.

Das macht aber als Annahme auch keinen Sinn. Du sprichst hier von unendlich vielen Ebenenee, wie sollen die paarweise senkrecht aufeinanderstehen?

> Die Ebenen der Schar sind also windschief zueinander.

Das geht nun gar nicht. Im Dreidimensionalen sind Geraden i.a. zueinander windschief. Ebenen besitzen nur für den Fall keine gemeinsamen Punkte, wenn sie echt parallel sind.

> Ist dieses beispielhafte Vorgehen ausreichend, oder
> müsste ich hier anders vorgehen?

Am Fehlen der Variablen y sieht man zunächst leicht, dass sämtliche Ebenen der Schar parallel zur y-Achse sind. Damit auch ihre Schnittgeraden (die damit natürlich sämtlich parallel sind).

Ist das Schulmathematik, also etwa eine Abituraufgabe? Für den Fall wäre die Antwort so ausreichend.

Ansonsten könnte man noch für zwei beliebige Ebenen [mm] E_{a_1}, E_{a_2} [/mm] in Abhängikeit von [mm] a_1 [/mm] und [mm] a_2 [/mm] die Lage der Schnittgeraden bestimmen, aber das wäre ja eigentlich ein Resultat, welches mit der Frage, wie die Ebenen zueinander liegen, nichts mehr zu tun hat.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 10h 34m 7. Gonozal_IX
UAnaR1FolgReih/Landau-Symbol (Big-O)
Status vor 1d 13h 35m 11. Gonozal_IX
UAnaRn/Existenz der Ableitung
Status vor 2d 2. Staffan
UFina/Estimating the Value at Risk
Status vor 3d 3. fred97
UAnaSon/Integrationsreihenfolge ∫∫
Status vor 3d 2. Gonozal_IX
SStochWkeit/WK einer Binomialv.
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]