matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEigenraeume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Eigenraeume
Eigenraeume < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraeume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Di 10.07.2012
Autor: silfide

Aufgabe
Sei f: [mm] \IR_{\le2}[x]\mapsto \IR_{\le2}[x], p(x)\mapsto x^{2} [/mm] p''(x)-2p(x)

Finden Sie alle Eigenwerte auf Eigenraeume auf f.

Sei Basis [mm] B:={1,x,x^{2}} [/mm]

Hey Leute,

habe eine Frage zur obigen Frage (stammt aus der Vorlesung von heute)

[mm] [f]_{B,B}=\pmat{ -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0} [/mm]

Mit [mm] P_{A}(\lambda)=det(\lambda I_{n} [/mm] - [mm] [f]_{B,B}) [/mm]
folgt [mm] \lambda_{1}=-2 [/mm] und [mm] \lambda_{2}=0 [/mm]

Nun soll fuer [mm] \lambda_{1}=-2 [/mm] folgen, dass eine Basis des Eigenraums ist {1,x}  


Nun soll fuer [mm] \lambda_{2}=0 [/mm] folgen, dass eine Basis des Eigenraums ist { [mm] x^{2} [/mm] }  


Aber wenn ich dass nachrechne, kommt bei mir genau das Gegenteil raus, also

Fuer [mm] \lambda_{1}=-2 [/mm] folgen, dass eine Basis des Eigenraums ist  { [mm] x^{2} [/mm] }


Fuer [mm] \lambda_{2}=0 [/mm] folgen, dass eine Basis des Eigenraums ist  {1,x}


Weiss jemand was ich falsch gemacht habe??
(Eigenraumbestimmug uebers charakteristische Polynom)

Silfide

        
Bezug
Eigenraeume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Di 10.07.2012
Autor: silfide

Okay, alles nochmal ueberdacht ... und nun habe ich es doch ...

Hat sich also erledigt!

Bezug
        
Bezug
Eigenraeume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Di 10.07.2012
Autor: fred97


> Sei f: [mm]\IR_{\le2}[x]\mapsto \IR_{\le2}[x], p(x)\mapsto x^{2}[/mm]
> p''(x)-2p(x)
>  
> Finden Sie alle Eigenwerte auf Eigenraeume auf f.
>  
> Sei Basis [mm]B:={1,x,x^{2}}[/mm]
>  Hey Leute,
>  
> habe eine Frage zur obigen Frage (stammt aus der Vorlesung
> von heute)
>  
> [mm][f]_{B,B}=\pmat{ -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0}[/mm]
>  
> Mit [mm]P_{A}(\lambda)=det(\lambda I_{n}[/mm] - [mm][f]_{B,B})[/mm]
>  folgt [mm]\lambda_{1}=-2[/mm] und [mm]\lambda_{2}=0[/mm]
>  
> Nun soll fuer [mm]\lambda_{1}=-2[/mm] folgen, dass eine Basis des
> Eigenraums ist {1,x}  
>
>
> Nun soll fuer [mm]\lambda_{2}=0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

folgen, dass eine Basis des

> Eigenraums ist { [mm]x^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}  


Das stimmt.


>
>
> Aber wenn ich dass nachrechne, kommt bei mir genau das
> Gegenteil raus, also
>
> Fuer [mm]\lambda_{1}=-2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

folgen, dass eine Basis des Eigenraums

> ist  { [mm]x^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>
>
> Fuer [mm]\lambda_{2}=0[/mm] folgen, dass eine Basis des Eigenraums
> ist  {1,x}
>  
>
> Weiss jemand was ich falsch gemacht habe??

Nein. Das kann Dir niemand sagen, denn Deine Rechnungen hast Du verschwiegen.

FRED

>  (Eigenraumbestimmug uebers charakteristische Polynom)
>  
> Silfide


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]