matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenräume sind F-invariant
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenräume sind F-invariant
Eigenräume sind F-invariant < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenräume sind F-invariant: Beweis
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 06.10.2010
Autor: ilfairy

Aufgabe
F [mm]\in[/mm] End(V)
[mm]\lambda[/mm] ist Eigenwert von F.
Zu zeigen: Eig(F, [mm]\lambda[/mm]) ist F-invarianter Unterraum von V.

Hallo!

Ich habe zwei Beweisideen und würde gern wissen, ob die richtig sind. Der zweite kommt mir schon etwas seltsam vor.. Vielen Dank für eure Hilfe!

Das ein Eigenraum ein Unterraum von V ist, ist klar und werde ich jetzt nicht durchgehen.

1.)
[mm]Eig(F, \lambda) := \left\{ v \in V | F(v) = \lambda * v \right\}[/mm]
F auf Eigenschaft anwenden und schauen, ob das Bild im Unterraum bleibt:

[mm]F(F(v)) = F(\lambda * v) = \lambda * F(v)[/mm]

also: [mm]F(v) \in Eig(F, \lambda)[/mm]
[mm]\Rightarrow Eig(F,\lambda)[/mm] ist F-invariant.



2.)
[mm]Eig(F, \lambda)[/mm] ist Unterraum von V, sei [mm]B = (v_{1}, .. ,v_{k})[/mm] Basis des Unterraums.
Sei u [mm]\in Eig(F, \lambda)[/mm], dann gibt es eine eindeutige Darstellung
[mm]u = a_{1}*v_{1} + .. + a_{k}*v_{k}[/mm]

Betrachte Bild von u:
[mm]F(u) = F(a_{1}*v_{1} + .. + a_{k}*v_{k}) = a_{1}*F(v_{1}) + .. + a_{k}*F(v_{k}) = a_{1}*\lambda*v_{1} + .. + a_{k}*\lambda*v_{k} = \lambda*(a_{1}*v_{1} + .. + a_{k}*v_{k}) = \lambda*u[/mm]

also: [mm]u \in Eig(F, \lambda)[/mm]
[mm]\Rightarrow Eig(F,\lambda)[/mm] ist F-invariant.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenräume sind F-invariant: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Mi 06.10.2010
Autor: fred97


> F [mm]\in[/mm] End(V)
>  [mm]\lambda[/mm] ist Eigenwert von F.
>  Zu zeigen: Eig(F, [mm]\lambda[/mm]) ist F-invarianter Unterraum von
> V.
>  Hallo!
>  
> Ich habe zwei Beweisideen und würde gern wissen, ob die
> richtig sind. Der zweite kommt mir schon etwas seltsam
> vor.. Vielen Dank für eure Hilfe!
>  
> Das ein Eigenraum ein Unterraum von V ist, ist klar und
> werde ich jetzt nicht durchgehen.
>  
> 1.)
>  [mm]Eig(F, \lambda) := \left\{ v \in V | F(v) = \lambda * v \right\}[/mm]
>  
> F auf Eigenschaft anwenden und schauen, ob das Bild im
> Unterraum bleibt:
>  
> [mm]F(F(v)) = F(\lambda * v) = \lambda * F(v)[/mm]
>  
> also: [mm]F(v) \in Eig(F, \lambda)[/mm]
>  [mm]\Rightarrow Eig(F,\lambda)[/mm]
> ist F-invariant.
>  
>


Alles bestens.

>
> 2.)
>  [mm]Eig(F, \lambda)[/mm] ist Unterraum von V, sei [mm]B = (v_{1}, .. ,v_{k})[/mm]
> Basis des Unterraums.
>  Sei u [mm]\in Eig(F, \lambda)[/mm], dann gibt es eine eindeutige
> Darstellung
>  [mm]u = a_{1}*v_{1} + .. + a_{k}*v_{k}[/mm]
>  
> Betrachte Bild von u:
>  [mm]F(u) = F(a_{1}*v_{1} + .. + a_{k}*v_{k}) = a_{1}*F(v_{1}) + .. + a_{k}*F(v_{k}) = a_{1}*\lambda*v_{1} + .. + a_{k}*\lambda*v_{k} = \lambda*(a_{1}*v_{1} + .. + a_{k}*v_{k}) = \lambda*u[/mm]
>  
> also: [mm]u \in Eig(F, \lambda)[/mm]


Hier hast Du Dich möglicherweise verschrieben: richtig: [mm]F(u) \in Eig(F, \lambda)[/mm]


dann ist der 2. Beweis auch O.K.

Wobei Du im 2. Beweis voraussetzen mußt, dass dim V <  [mm] \infty [/mm] ist. Das brauchst Du im 1. Beweis nicht

FRED

>  [mm]\Rightarrow Eig(F,\lambda)[/mm] ist
> F-invariant.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Eigenräume sind F-invariant: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Fr 08.10.2010
Autor: ilfairy

Ja, stimmt! Da hab ich mich verschrieben!



Danke für die schnelle Antwort!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]