matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenraum
Eigenraum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Mo 31.05.2010
Autor: Dr.Prof.Niemand

Hi,
ich habe Probleme bei der Bestimmung von Eigenräumen. Habe den Wikipedia Artikel gelesen und so, aber ich verstehe es nicht wirklich. Kann mir jemand erklären, wie ich den Eigenraum einer Matrix bestimme (vllt. mit einem kleinen Beispiel) und die Dimension des Eigenraums ablesen kann?

        
Bezug
Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Mo 31.05.2010
Autor: schachuzipus

Hallo Dr.Prof.Niemand,

> Hi,
>  ich habe Probleme bei der Bestimmung von Eigenräumen.
> Habe den Wikipedia Artikel gelesen und so, aber ich
> verstehe es nicht wirklich. Kann mir jemand erklären, wie
> ich den Eigenraum einer Matrix bestimme (vllt. mit einem
> kleinen Beispiel) und die Dimension des Eigenraums ablesen
> kann?

Besser wär's, du würdest erklären, was genau du nicht verstehst.

Du hast eine Matrix [mm] $A\in \operatorname{Mat}(n\times n,\mathbb{K})$ [/mm] gegeben, stellst das charakteristische Polynom auf mittels

[mm] $\operatorname{det}(A-\lambda\cdot{}\mathbb{E}_n)$, [/mm] wobei [mm] $\mathbb{E}_n$ [/mm] die [mm] $n\times [/mm] n$ - Eiheitsmatrix über [mm] $\IK$ [/mm] ist.

Das char. Polynom hat Grad n.

Von diesem Polynom bestimmst du die Nullstellen, das sind die Eigenwerte.

Zu jedem Eigenwert [mm] $\lambda_k$ [/mm] bestimme den [mm] $\operatorname{Kern}$ [/mm] der Matrix [mm] $(A-\lambda_k\cdot{}\mathbb{E}_n)$ [/mm]

Dieser Kern ist der Eigenraum zum Eigenwert [mm] $\lambda_k$, [/mm] irgendein Vektor daraus [mm] (\neq [/mm] 0) ist dann ein Eigenvektor zum Eigenwert [mm] $\lambda_k$. [/mm]

Die Dimension des Eigenraumes ist wie bei jedem Vektorraum die Anzahl seiner Basisvektoren ...

Ich gebe dir ein einfaches Bsp., an dem du mal rumdoktoren kannst.

Einen Anfang müsstet du nun hinbekommen ...

Nimm mal die symmetrische Matrix [mm] $A=\pmat{1&4\\4&1}$ [/mm]

Nun arbeite mal das Programm step-by-step ab ...

Gruß

schachuzipus


Bezug
                
Bezug
Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Mo 31.05.2010
Autor: Dr.Prof.Niemand

Danke für deine Antwort.
Char. Polynom:
x(t)=t²-2t+15=(t+3)*(t-5)
Also erhalte ich die Eigenwerte -3 und 5.

Eigenraum zu -3:
ker [mm] \pmat{ 4 & 4 \\ 4 & 4 } [/mm]  
[mm] \gdw \pmat{ 4 & 4 \\ 4 & 4 } [/mm] * [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{0 \\ 0} [/mm]
[mm] \Rightarrow [/mm] x=-y
Also ist der Eigenraum zu -3: { [mm] \vektor{1 \\ -1} [/mm] , [mm] \vektor{0 \\ 0} [/mm] }
Also ist die Dimension 1.

Eigenraum zu 5:
ker [mm] \pmat{ -1 & 4 \\ -1 & 4 } [/mm]
[mm] \gdw \pmat{ -1 & 4 \\ -1 & 4 } [/mm] * [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{0 \\ 0} [/mm]
[mm] \Rightarrow [/mm] x=5y
Also ist der Eigenraum zu 5: { [mm] \vektor{1 \\ 5} [/mm] , [mm] \vektor{0 \\ 0} [/mm] }
Also ist die Dimension 1.

Ist das richtig so?

Falls ja, wie kann ich den Vektorraum für diese Lösungen des Gleichungssystems aus ker(A-t*I) berechnen?
Habe hier das Problem, dass die Lösungen in Abhängigkeit von zwei Variablen sind. Also sind hier ja mehrere Lösungsmöglichkeiten....
a=c-e
b=e
c=c
d=e
e=e

Bezug
                        
Bezug
Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 31.05.2010
Autor: angela.h.b.


> Danke für deine Antwort.
>  Char. Polynom:
>  x(t)=t²-2t+15=(t+3)*(t-5)
>  Also erhalte ich die Eigenwerte -3 und 5.
>  
> Eigenraum zu -3:
>  ker [mm]\pmat{ 4 & 4 \\ 4 & 4 }[/mm]  
> [mm]\gdw \pmat{ 4 & 4 \\ 4 & 4 }[/mm] * [mm]\vektor{x \\ y}[/mm] = [mm]\vektor{0 \\ 0}[/mm]
>  
> [mm]\Rightarrow[/mm] x=-y

Hallo,

also haben alle Vektoren des Eigenraumes die gestalt

[mm] \vektor{x\\y}=\vektor{t\\-t}=t*\vektor{1\\-1}. [/mm]

Also ist [mm] \vektor{1\\-1} [/mm] eine Basis des Eigenraumes Eig(-3,A).
Der Eigenraum hat die Dimension 1.
Es ist [mm] Eig(-3,A)=<\vektor{1\\-1}>= \{t\vektor{1\\-1} | t\in \IR\}. [/mm]


> Eigenraum zu 5:
>  ker [mm]\pmat{ -1 & 4 \\ -1 & 4 }[/mm]
> [mm]\gdw \pmat{ -1 & 4 \\ -1 & 4 }[/mm] * [mm]\vektor{x \\ y}[/mm] =
> [mm]\vektor{0 \\ 0}[/mm]
>  [mm]\Rightarrow[/mm] x=5y

??? Was hat Dich hier geritten?


> Falls ja, wie kann ich den Vektorraum für diese Lösungen
> des Gleichungssystems aus ker(A-t*I) berechnen?
>  Habe hier das Problem, dass die Lösungen in Abhängigkeit
> von zwei Variablen sind. Also sind hier ja mehrere
> Lösungsmöglichkeiten....
>  a=c-e
>  b=e
>  c=c
>  d=e
>  e=e

??? Ich verstehe nicht, was Du meinst.
Die bestimmung des Eigenraumes ist doch die Bestimmung des Kerns einer Matrix.
Dazu bringt man die matrix erstmal auf Zeilenstufenform.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]