matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenraum berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Eigenraum berechnen
Eigenraum berechnen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Do 08.04.2010
Autor: ATDT

Aufgabe
Entscheiden Sie, ob die reellen Matrizen A und B diagonalisierbar sind.

A= [mm] \pmat{ 1 & 16 & -8 \\ 0 & 1 & 0 \\ 0 & -4 & 3 }, [/mm]
B= [mm] \pmat{ 1 & 16 & -8 \\ 0 & 1 & 0 \\ 0 & 4 & 3 } [/mm]

Ist A diagonalisierbar?

Ist B diagonalisierbar?

Hallo liebe Mathe-Freunde,

ich habe Probleme bei der Bestimmung der Eigenräume.
Die Eigenwerte sind durch Lösen des char. Polynoms kein Problem.

Für A sind die Eigenwerte: 1 und 3

Eine Musterlösung habe ich hier vor mir liegen jedoch kann ich sie nicht nachvollziehen.
Nach was wird aufgelöst ? x, y, z? also für das Ergebnis des Eigenraums.

Hier ein Ausschnitt aus der Musterlösung:

v = [mm] (x,y,z)^t [/mm] liegt im Eigenraum zum Eigenwert 1 [mm] \gdw [/mm] Av=v

x + 16y -8z = x
y =  y
-4y + 3z = z

[mm] \gdw [/mm]

16y = 8z
y = y
y = 1/2z

[mm] \gdw [/mm]

z = 2y [mm] \gdw [/mm] v = [mm] (x,y,2y)^t [/mm]

Der Eigenraum zum Eigenwert 1 ist also [mm] span((0,1,2)^t, (1,0,0)^t) [/mm]


Nach was geht man da vor bei der Bestimmung des Eigenraumes?

Danke im Voraus
und LG ATDT

        
Bezug
Eigenraum berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Do 08.04.2010
Autor: Fawkes

Hi,
fangen wir am besten mal langsam an.
Was muss denn gelten, damit eine Matrix diag'bar ist?
Bestimmen wir dann mal die Eigenwerte:
Hierfür gilt:
P(x)=0
P(x) ist das char. Polynom der Matrix und lässt sich wie folgt bestimmen:
P(x)=det(A-xId) für Id (Identität) kann man auch E für Einheitsmatrix schreiben, das ist dem Autor oder der Autorin frei überlassen.
Nehmen wir also mal die Matrix A, dann folgt:
[mm] P(x)=det(\pmat{ 1 & 16 & -8 \\ 0 & 1 & 0 \\ 0 & -4 & 3 }-xId)=det\pmat{ 1-x & 16 & -8 \\ 0 & 1-x & 0 \\ 0 & -4 & 3-x }=... [/mm]
Hier muss jetzt also die Determinante berechnet werden. Da es nur eine 3x3 Matrix ist, ist dies relativ simple und bleibt dir überlassen.
Dein Ergebnis musst du dann gleich 0 setzen, also die Nullstellen des char. Polynoms bestimmen. Wenn du das dann gemacht hast, gucken wir uns die Eigenräume an ok?
Gruß Fawkes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]