matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenEigenschaften Hyperbelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Eigenschaften Hyperbelfunktion
Eigenschaften Hyperbelfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften Hyperbelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Di 08.01.2008
Autor: alexalex

Aufgabe
Zeigen Sie, da die folgenden Abbildungen bijektiv sind:
sinh(x) : [mm] \IR\to\IR [/mm]
cosh(x) : [mm] [0,\infty[\to[1,\infty[ [/mm]
tanh(x) : [mm] \IR\to]-1,1[ [/mm]

Guten Tag!

Wenn ich mir die Funktionsgraphen im gegebenen Definitionsbereich angucke, ist mir die Bijektivität klar, nur weiß ich leider nicht, wie ich dies hier mathematisch korrekt zeigen soll.
Kann mir jemand helfen?

Für Anregungen, Beispiele oder Ansätze wäre ich sehr dankbar!

MFG AlexAlex

        
Bezug
Eigenschaften Hyperbelfunktion: Umkehrfunktionen bestimmen
Status: (Antwort) fertig Status 
Datum: 17:48 Di 08.01.2008
Autor: Loddar

Hallo AlexAlex!


Wende mal die entsprechenden Definitionen der Hyperbelfunktionen an und bestimme anschließend die zugehörigen Umkehrfunktionen in den genannten Intervallen.

[mm] $$\sinh(x) [/mm] \ = \ [mm] \bruch{e^x-e^{-x}}{2}$$ [/mm]
[mm] $$\cosh(x) [/mm] \ = \ [mm] \bruch{e^x+e^{-x}}{2}$$ [/mm]
[mm] $$\tanh(x) [/mm] \ = \ [mm] \bruch{\sinh(x)}{\cosh(x)} [/mm] \ = \ [mm] \bruch{e^x-e^{-x}}{e^x+e^{-x}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Eigenschaften Hyperbelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Di 08.01.2008
Autor: alexalex

Danke! Hat geklappt!

Schönen Abend noch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]