matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenEigenschaften der Determinate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Eigenschaften der Determinate
Eigenschaften der Determinate < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften der Determinate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 Fr 20.06.2008
Autor: mempys

Hallo!
Sitze gerade an meinen Hausaufgaben und verstehe gerade eine Aufgabenstellung nicht,hoffe ihr koennt mir weiterhelfen...
Ich soll mit den Eigenschaften der Determinante zeigen, dass die Basis B eine Basis des [mm] R^{4} [/mm] ist.

[mm] B=\begin{cases} \vektor{2 \\ 1 \\ 2 \\0}\vektor{1 \\ 2 \\ -2 \\0}\vektor{-2 \\ 2 \\1 \\0}\vektor{0 \\ 0 \\ 0 \\ 1} \end{cases} [/mm]

mfg mempys
    

        
Bezug
Eigenschaften der Determinate: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 20.06.2008
Autor: koepper

Hallo,

4 linear unabhängige Vektoren bilden im [mm] $\IR^4$ [/mm] automatisch eine Basis.
Die Vektoren sind linear unabhängig, wenn sie nur mittels der trivialen Linearkombination den Nullvektor erzeugen.
Das entsprechende LGS muß also eindeutig lösbar sein. Nach der Cramerschen Regel ist das der Fall, wenn die Determinante der Koeffizientenmatrix ungleich Null ist.

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]