matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungEigentlich einfacheAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Eigentlich einfacheAbleitung
Eigentlich einfacheAbleitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigentlich einfacheAbleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:16 Mo 15.01.2007
Autor: Kristien

Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man die Ableitung von:
1) f(x)=  [mm] \bruch{3x^2-x^2}{2x^2} [/mm]
Es müsste hierbei: f '(x)=  [mm] \bruch{1}{2yx^2} [/mm] herauskommen. Aber warum? Ich habe hier einfach die Quotientenregel verwendet es kommt aber nicht heraus!
2) f(x)= [mm] \bruch{1-x^2}{x} [/mm]
Es müsste herauskommen: f '(X)= [mm] \bruch{-1}{x^2}-1 [/mm]
Ich bekomme aber wieder mit der Quotientenregel: 1 heraus [mm] also\bruch{x^2}{x^2} [/mm]
3) f(x)= [mm] \bruch{(x+1)^0,5}{(x-1)^0,5} [/mm]
Hierbei müsste f '(x)= - [mm] \bruch{1}{(x^2 -1)^0,5 *(x-1)} [/mm]

Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
Dankeschö.

        
Bezug
Eigentlich einfacheAbleitung: Tipps
Status: (Antwort) fertig Status 
Datum: 09:00 Mo 15.01.2007
Autor: informix

Hallo Kristien,

> Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man
> die Ableitung von:
>  1) f(x)=  [mm]\bruch{3x^2-x^2}{2x^2}[/mm]

bitte überprüfe diesen Term, er ist so unsinnig!

>  Es müsste hierbei: f '(x)=  [mm]\bruch{1}{2yx^2}[/mm] herauskommen.

wo kommt das y her?!

> Aber warum? Ich habe hier einfach die Quotientenregel
> verwendet es kommt aber nicht heraus!

zeig uns bitte deine Rechnung, sonst können wir ja nicht wissen, was du rechnest.

>  2) f(x)= [mm]\bruch{1-x^2}{x}[/mm]
>  Es müsste herauskommen: f '(X)= [mm]\bruch{-1}{x^2}-1[/mm]
>  Ich bekomme aber wieder mit der Quotientenregel: 1 heraus
> [mm]also\bruch{x^2}{x^2}[/mm]

nimm statt der (komplizierteren) Quotientenregel doch einfach: [mm] f(x)=\frac{1}{x}-x [/mm] als Term...

>  3) f(x)= [mm]\bruch{(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]
> Hierbei müsste f '(x)= - [mm]\bruch{1}{(x^2 -1)^{0,5} *(x-1)}[/mm]
>

schaun 'mer mal:
[mm] u(x)=(x+1)^{0,5} u'(x)=\frac{1}{2}(x+1)^{-0,5} [/mm]
[mm] v(x)=(x-1)^{0,5} v'(x)=\frac{1}{2}(x-1)^{-0,5} [/mm]

und jetzt die MBQuotientenregel: [mm] f'(x)=\frac{u'v-v'u}{v^2} [/mm]

[mm] f'(x)=\frac{\frac{1}{2}(x+1)^{-0,5}*(x-1)^{0,5}-\frac{1}{2}(x-1)^{-0,5}*(x+1)^{0,5}}{((x-1)^{0,5})^2} [/mm]

[verbessert: informix]

Doppelbruch auflösen, zusammenfassen, dritte binomische Formel beachten!

> Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
>  Dankeschö.


Gruß informix

Bezug
                
Bezug
Eigentlich einfacheAbleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:14 Mo 15.01.2007
Autor: Kristien


> Hallo Kristien,
>  
> > Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man
> > die Ableitung von:
>  >  1) f(x)=  [mm]\bruch{3x^2-x^2}{2x^2}[/mm]
>  bitte überprüfe diesen Term, er ist so unsinnig!
>  
> >  Es müsste hierbei: f '(x)=  [mm]\bruch{1}{2yx^2}[/mm] herauskommen.

> wo kommt das y her?!
>  
> > Aber warum? Ich habe hier einfach die Quotientenregel
> > verwendet es kommt aber nicht heraus!
>  zeig uns bitte deine Rechnung, sonst können wir ja nicht
> wissen, was du rechnest.
>  
> >  2) f(x)= [mm]\bruch{1-x^2}{x}[/mm]

>  >  Es müsste herauskommen: f '(X)= [mm]\bruch{-1}{x^2}-1[/mm]
>  >  Ich bekomme aber wieder mit der Quotientenregel: 1
> heraus
> > [mm]also\bruch{x^2}{x^2}[/mm]
>  nimm statt der (komplizierteren) Quotientenregel doch
> einfach: [mm]f(x)=\frac{1}{x}-x[/mm] als Term...
>  
> >  3) f(x)= [mm]\bruch{(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]

> > Hierbei müsste f '(x)= - [mm]\bruch{1}{(x^2 -1)^{0,5} *(x-1)}[/mm]
>  
> >
> schaun 'mer mal:
>  [mm]u(x)=(x+1)^{0,5} u'(x)=\frac{1}{2}(x+1)^{-0,5}[/mm]
>  
> [mm]v(x)=(x-1)^{0,5} v'(x)=\frac{1}{2}(x-1)^{-0,5}[/mm]
>  
> und jetzt die MBQuotientenregel:
> [mm]f'(x)=\frac{u'v-v'u}{v^2}[/mm]
>  
> [mm]f'(x)=\frac{\frac{1}{2}(x+1)^{-0,5}*(x-1)^{0,5}-\frac{1}{2}(x-1)^{-0,5}*(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]

  
Hi informix, müsste unter dem Bruchstrich jetzt nicht einfach: x-1 stehen, da es vorher ja wurzel aus x-1 war und [mm] v^2 [/mm] gerechnet werden muss?! Danke für Nr. 2 , ging echt einfacher! Bei Nr. 1 es stimmt, der Bruch ist echt schwachsinnig, da ja 1 herauskommt! Steht aber tatsächlich so im Buch!

> Doppelbruch auflösen, zusammenfassen, dritte binomische
> Formel beachten!
>  
> > Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
>  >  Dankeschö.
>
>
> Gruß informix

Bezug
                        
Bezug
Eigentlich einfacheAbleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Mo 15.01.2007
Autor: informix

Hallo Kristien,

> > Hallo Kristien,
>  >  
> > > Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man
> > > die Ableitung von:
>  >  >  1) f(x)=  [mm]\bruch{3x^2-x^2}{2x^2}[/mm]
>  >  bitte überprüfe diesen Term, er ist so unsinnig!
>  >  
> > >  Es müsste hierbei: f '(x)=  [mm]\bruch{1}{2yx^2}[/mm] herauskommen.

> > wo kommt das y her?!
>  >  
> > > Aber warum? Ich habe hier einfach die Quotientenregel
> > > verwendet es kommt aber nicht heraus!
>  >  zeig uns bitte deine Rechnung, sonst können wir ja
> nicht
> > wissen, was du rechnest.
>  >  
> > >  2) f(x)= [mm]\bruch{1-x^2}{x}[/mm]

>  >  >  Es müsste herauskommen: f '(X)= [mm]\bruch{-1}{x^2}-1[/mm]
>  >  >  Ich bekomme aber wieder mit der Quotientenregel: 1
> > heraus
> > > [mm]also\bruch{x^2}{x^2}[/mm]
>  >  nimm statt der (komplizierteren) Quotientenregel doch
> > einfach: [mm]f(x)=\frac{1}{x}-x[/mm] als Term...
>  >  
> > >  3) f(x)= [mm]\bruch{(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]

> > > Hierbei müsste f '(x)= - [mm]\bruch{1}{(x^2 -1)^{0,5} *(x-1)}[/mm]
>  
> >  

> > >
> > schaun 'mer mal:
>  >  [mm]u(x)=(x+1)^{0,5} u'(x)=\frac{1}{2}(x+1)^{-0,5}[/mm]
>  >  
> > [mm]v(x)=(x-1)^{0,5} v'(x)=\frac{1}{2}(x-1)^{-0,5}[/mm]
>  >  
> > und jetzt die MBQuotientenregel:
> > [mm]f'(x)=\frac{u'v-v'u}{v^2}[/mm]
>  >  
> >
> [mm]f'(x)=\frac{\frac{1}{2}(x+1)^{-0,5}*(x-1)^{0,5}-\frac{1}{2}(x-1)^{-0,5}*(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]
>    
> Hi informix, müsste unter dem Bruchstrich jetzt nicht
> einfach: x-1 stehen, da es vorher ja wurzel aus x-1 war und
> [mm]v^2[/mm] gerechnet werden muss?!

[sorry] hast natürlich recht - ich hab's verbessert.

> Danke für Nr. 2 , ging echt
> einfacher! Bei Nr. 1 es stimmt, der Bruch ist echt
> schwachsinnig, da ja 1 herauskommt! Steht aber tatsächlich
> so im Buch!
>
> > Doppelbruch auflösen, zusammenfassen, dritte binomische
> > Formel beachten!
>  >  
> > > Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
>  >  >  Dankeschö.
> >
> >
> > Gruß informix  


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]