matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEigenvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Eigenvektor
Eigenvektor < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Mi 09.11.2005
Autor: Freak84

Hi Leute
Ich sitz hier vor einer Aufgabe und bin auch schon fast fertig nur irgendwie haben ich gerade total den Blackout

Ich soll zu einer Matrix Eigendwert und Eigendvektor bestimmten.

Den Eigendwert habe ich nur der Vektor macht mir Probleme.

A =  [mm] \pmat{ cos( \alpha) & -sin( \alpha) \\ sin( \alpha) & cos( \alpha) } [/mm]

Mit der Formel | A -  [mm] \lambda [/mm] E | = 0

Somit habe ich die eigenwerte

[mm] \lambda_{1} [/mm] = [mm] cos(\alpha) [/mm] + i [mm] sin(\alpha) [/mm]
[mm] \lambda_{2} [/mm] = [mm] cos(\alpha) [/mm] - i [mm] sin(\alpha) [/mm]

Mit diesen werten gehe ich jetzt jeweils in die Gleichung

( A -  [mm] \lambda [/mm] E ) * x =0

Wobei X gleich der Eigenvektor ist.
Allerdings bekomme ich hier nur mist raus.

Könnt ihr mir bitte helfen

Vielen dank


        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Mi 09.11.2005
Autor: Stefan

Hallo!

Naja, beim Eigenwert [mm] $\lambda_1 [/mm] = [mm] \cos(\alpha) [/mm] + [mm] i\sin(\alpha)$ [/mm] musst du ja das LGS

$ [mm] \pmat{-i \sin(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & -i\sin(\alpha)} \cdot \pmat{x_1 \\ x_2} [/mm] = [mm] \pmat{0 \\ 0}$ [/mm]

lösen, also (da die beiden Zeilen linear abhängig sind):

[mm] $-i\sin(\alpha)x_1 [/mm] - [mm] \sin(\alpha) x_2=0$. [/mm]

Naja, man sieht ja sofort, dass dies durch [mm] $\pmat{1 \\ -i}$ [/mm] (und alle Vielfachen davon) gelöst wird, oder nicht? :-)

Ähnliches gilt beim zweiten Eigenwert...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]