matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEigenvektor bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Eigenvektor bestimmen
Eigenvektor bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Sa 13.05.2006
Autor: DaMOEkles

Aufgabe
Bestimmen Sie Eigenwerte und Eigenvektoren von:

A =  [mm] \pmat{ 1 & 1 \\ -2 & 1 } [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo alle zusammen. Ich bin der DaMOEkles und um ehrlich zu sein, ist Mathe für mich ein rotes Tuch. Leider schreibe ich bald eine wichtige Klausur und deswegen habe ich eine Frage.

Hier erstmal meine bisherige Lösung der Aufgabe:

A =  [mm] \pmat{ 1- \lambda & 1 \\ -2 & 1- \lambda } [/mm]

[mm] (1-\lambda)*(1-\lambda)+2 [/mm] = 0

[mm] 1-\lambda-1*\lambda+\lambda^{2}+2 [/mm] = 0

[mm] \lambda^{2}-2*\lambda+3 [/mm] = 0


[mm] x_{1,2}=-\bruch{-2}{2} \pm \wurzel{\bruch{2}{2}^{2}-3} [/mm]

[mm] \Rightarrow x_{1,2}=1 \pm \wurzel{-2} [/mm]

[mm] \lambda_{1} [/mm] = 1+2*i
[mm] \lambda_{2} [/mm] = 1-2*i


weiter gehts ja folgendermaßen:

[mm] (A-\lambda_{1}*E)*x [/mm] = 0

also tu ich das

(A-(1+2*i)*E)*x = 0

= [mm] \pmat{ 1-(1+2*i) & 1-(1+2*i) \\ -2-(1+2*i) & 1-(1+2*i) } [/mm] * [mm] \vektor{x_{1} \\ x_{2}} [/mm] = [mm] \vektor{0 \\ 0} [/mm]

So ... wenn ich das jetzt weiterverfolge kommt bei mir nur noch Unsinn raus. Gibt es da einen Trick, mit dem ich dem ich die Komplexe Zahl umwandeln kann, oder so?
Ich bin für jede Hilfe dankbar!

Gruß DaMOEkles


        
Bezug
Eigenvektor bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Sa 13.05.2006
Autor: vanguard2k


> Bestimmen Sie Eigenwerte und Eigenvektoren von:
>  
> A =  [mm]\pmat{ 1 & 1 \\ -2 & 1 }[/mm]
>  Ich habe diese Frage in
> keinem Forum auf anderen Internetseiten gestellt.
>  
> Hallo alle zusammen. Ich bin der DaMOEkles und um ehrlich
> zu sein, ist Mathe für mich ein rotes Tuch. Leider schreibe
> ich bald eine wichtige Klausur und deswegen habe ich eine
> Frage.
>  
> Hier erstmal meine bisherige Lösung der Aufgabe:
>  
> A =  [mm]\pmat{ 1- \lambda & 1 \\ -2 & 1- \lambda }[/mm]
>  
> [mm](1-\lambda)*(1-\lambda)+2[/mm] = 0
>  
> [mm]1-\lambda-1*\lambda+\lambda^{2}+2[/mm] = 0
>  
> [mm]\lambda^{2}-2*\lambda+3[/mm] = 0
>  
>
> [mm]x_{1,2}=-\bruch{-2}{2} \pm \wurzel{\bruch{2}{2}^{2}-3}[/mm]
>  
> [mm]\Rightarrow x_{1,2}=1 \pm \wurzel{-2}[/mm]
>  
> [mm]\lambda_{1}[/mm] = 1+2*i
>  [mm]\lambda_{2}[/mm] = 1-2*i
>  
>
> weiter gehts ja folgendermaßen:
>  
> [mm](A-\lambda_{1}*E)*x[/mm] = 0
>  
> also tu ich das
>  
> (A-(1+2*i)*E)*x = 0
>  
> = [mm]\pmat{ 1-(1+2*i) & 1-(1+2*i) \\ -2-(1+2*i) & 1-(1+2*i) }[/mm]
> * [mm]\vektor{x_{1} \\ x_{2}}[/mm] = [mm]\vektor{0 \\ 0}[/mm]
>  
> So ... wenn ich das jetzt weiterverfolge kommt bei mir nur
> noch Unsinn raus. Gibt es da einen Trick, mit dem ich dem
> ich die Komplexe Zahl umwandeln kann, oder so?
>  Ich bin für jede Hilfe dankbar!
>  
> Gruß DaMOEkles
>  

Hallo DaMOEkles!

Achtung! Bei dir gibts 2 Gründe warum unsinn rauskommt:

1.) Du hast die Eigenwerte falsch berechnet! Die richtigen sind: [mm]1 \pm \wurzel{2}*i[/mm]

2.) Du hast die Matrix E interpretiert als die Matrix mit lauter Einsen! In Wirklichkeit ist E jedoch die Einheitsmatrix, d.h. Einsen in der Hauptdiagonale und sonst lauter Nullen.

Das richtige LGS sieht jetzt so aus:

[mm]\pmat{ 1-(1+\wurzel{2}*i) & 1 \\ -2 & 1-(1+\wurzel{2}*i) }[/mm]
und die Umformungen sind im Komplexen halt a bissl lästig:
[mm]\pmat{ 1-(1+\wurzel{2}*i) & 1 \\ -2 & 1-(1+\wurzel{2}*i) }[/mm] ~
[mm]\pmat{ -\wurzel{2}*i) & 1 \\ -2 & -\wurzel{2}*i) }[/mm]~
und jetzt erste zeile mit  [mm]\wurzel{2}*i[/mm] multiplizieren und zur 2. dazuaddieren...
~[mm]\pmat{ -\wurzel{2}*i) & 1 \\ 0 & 0 }[/mm]

und wennst jetzt mit i multiplizierst und dann durch wurzel 2 dividierst sollte das Ganze kein Problem mehr darstellen

Hoffe dass ich dir helfen konnte

Michael


Bezug
                
Bezug
Eigenvektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Sa 13.05.2006
Autor: DaMOEkles

Danke für deine schnelle Antwort, aber ich hätte da noch eine Frage.

>  ~[mm]\pmat{ -\wurzel{2}*i & 1 \\ 0 & 0 }[/mm]
>  
> und wennst jetzt mit i multiplizierst und dann durch wurzel
> 2 dividierst sollte das Ganze kein Problem mehr darstellen

Würde dann nicht sowas dabei rauskommen?

-> mit i multiplizieren:

[mm]\pmat{ -\wurzel{2}*1 & i \\ 0 & 0 }[/mm]

-> durch wurzel 2 dividieren

[mm]\pmat{ -1 & \bruch{i}{\wurzel{2}} \\ 0 & 0 }[/mm]

Da habe ich das ganze doch nur vertauscht, oder habe ich wieder einen Fehler gemacht?

Bezug
                        
Bezug
Eigenvektor bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Sa 13.05.2006
Autor: taura

Hallo DaMOEkles!

Nein das ist so schon richtig, allerdings nicht unbedingt notwendig. Du erhälst das Gleichungssystem

[mm] $\pmat{ -\sqrt{2}*i & 1 \\ 0 & 0 }*\vektor{x \\ y}=\vektor{0 \\ 0}$ [/mm]

Wenn du dieses Gleichungssystem löst, erhälst du den Eigenraum zum Eigenwert [mm] $\lambda_1$ [/mm] (in diesem Fall eindimensional), ein Eigenvektor ist dann ein beliebiger Vektor aus diesem Eigenraum.

Gruß taura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]