matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektorbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenvektorbestimmung
Eigenvektorbestimmung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektorbestimmung: Idee
Status: (Frage) beantwortet Status 
Datum: 13:04 So 22.01.2012
Autor: Coup

Aufgabe
gegeben sei die Abbildung [mm] F:K^3->K^3 [/mm] ( [mm] x1,x2,x3)^t \mapsto (x2,x3,0)^t [/mm]
Stellen Sie F als Standardinterpretation FA einer Matrix [mm] AeK^{3x3} [/mm] dar und bestimmen sie Charakteristisches Polynom, Eigenwerte und Vektoren von F.
Ist F diagonalisierbar ?

Hi,
meine Matrix lautet ja nun
A [mm] \pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 } [/mm]
somit ist das gesuchte CP  [mm] -x^3 [/mm] da
[mm] \pmat{ 0-\lambda & 1 & 0 \\ 0 & 0- \lambda & 1 \\ 0 & 0 & 0 - \lambda } [/mm]
Also sind die Eigenwerte in diesem Falle { 0;0;0 }.
Um jetzt einen Eigenvektor zu bestimmen nehme ich doch meine Matrix A
und rechne (A - 0*E1) welches ja einfach die Ausgangsmatrix A bleibt =
A [mm] \pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 } [/mm]
Jetzt steht aber im Buch das es zum doppelten Eigenwert 0 den Eigenvektor {1,0,0} gibt. Wie sehe ich das ? Ich muss doch meine Matrix als Gleichungssystem betrachten.. sehe es aber dooferweise nicht.
Da es aber offenbar nur diesen einen Eigenvektor gibt kann ich ja darauf schließen das F nicht diagonalisierbar ist oder ?


lg
Micha

        
Bezug
Eigenvektorbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 So 22.01.2012
Autor: Schadowmaster

moin coup,

Deine Überlegungen sehen größtenteils gut aus, nur eine Kleinigkeit:
Das charakteristische Polynom ist nach Definition immer normiert.
Es wird also berechnet als [mm] $det(x*E_n-A)$. [/mm]
Das macht zwar bei der Ermittlung der Nullstellen keinen großen Unterschied, ich würde dir aber raten es dir dennoch schonmal anzugewöhnen, da das charakteristische Polynom später auch noch für andere Sachen gebraucht wird; und da sollte es normiert sein.

Dann zur Frage.
Ersteinmal allgemein:
Sei $A$ eine Matrix, [mm] $\lambda$ [/mm] ein Eigenwert und $x$ ein Eigenvektor zu [mm] $\lambda$. [/mm]
Dann heißt das ja:
$Ax = [mm] \lambda*x \gdw [/mm] Ax = [mm] \lambda*E_n*x \gdw Ax-\lambda*E_n*x [/mm] = 0 [mm] \gdw (A-\lambda*E_n)x [/mm] = 0$
Für die Eigenvektoren zu einem Eigenwert [mm] $\lambda$ [/mm] ist also der Kern von [mm] $(A-\lambda*E_n)$ [/mm] zu berechnen.

Da in deinem Fall [mm] $\lambda=0$ [/mm] musst du also den Kern von $A$ berechnen.
Nun weißt du vielleicht, dass die Dimension des Kerns addiert zum Rang der Matrix gerade die größer der Matrix (so lange diese quadratisch ist) ergeben muss.
Der Rang von $A$ ist offensichtlich 2, somit ist der Kern eindimensional.
Es reicht also einen einzigen Vektor (ungleich 0) zu finden, der im Kern liegt.
Dieser ist dann sofort eine Basis des Kerns, da der Kern ja eben ein eindimensionaler Vektorraum ist.

Wenn du nun hoffentlich auch noch weißt, dass in den Spalten einer Abbildungsmatrix die Bilder der Basis stehen (also die erste Spalte von $A$ ist das Bild vom ersten Standardbasisvektor, etc.) und wenn du dann mit scharfem Auge siehst, dass die erste Spalte von $A$ gleich 0 ist, sollte klar sein, wieso der erste Standardbasisvektor im Kern liegt.
Über die Dimensionsüberlegung von oben erhältst du dann, dass du an dieser Stelle schon fertig bist.

Und ja, du hast Recht, F ist nicht diagonalsierbar.


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]