matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEigenvektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Eigenvektoren
Eigenvektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: Basis aus Eigenvektoren
Status: (Frage) beantwortet Status 
Datum: 21:17 So 29.01.2006
Autor: heine789

Hallo zusammen!

Gegeben ist die Matrix A = [mm] \pmat{ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 } [/mm]

Habe nun die Eigenvektoren bestimmt zu:
(Eigenwerte sind mit [mm] \lambda [/mm] bezeichnet.)

[mm] \lambda_{1,2} [/mm] = 0 (alg. Vv. 2):
[mm] \vektor{-1 \\ 1 \\ 0}, \vektor{-1 \\ 0 \\ 1}, [/mm]

[mm] \lambda_{3} [/mm] = 3 (alg. Vv. 1):
[mm] \vektor{1 \\ 1 \\ 1} [/mm]

Ich soll nun eine Basis des [mm] \IR^{3} [/mm] aus Eigenvektoren von A angeben.

Wie mach ich denn das? Weiß nur das die Eigenvektoren jeweils zu einem Eigenwert einen Eigenraum aufspannen. Also in meinem Fall 2 Eigenräume, einer mit dim2 und der zweite mit dim1.

Wäre sehr froh wenn mir jemand helfen könnte.

Gruß heine

        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 So 29.01.2006
Autor: DerHein

Du hast die Basis doch gerade hingeschrieben:
$ [mm] \vektor{-1 \\ 1 \\ 0}, \vektor{-1 \\ 0 \\ 1}, \vektor{1 \\ 1 \\ 1} [/mm] $

die ersten beiden spannen der Eigenraum zum Eigenwert 0 (= Kern) von A auf und der dritte ist linar unabhänig. Also hast du eine Basis von [mm] R^3. [/mm]


Bezug
                
Bezug
Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 So 29.01.2006
Autor: heine789

Vielen Dank für deine Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]