matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektoren berechnen!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren berechnen!
Eigenvektoren berechnen! < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren berechnen!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Di 14.07.2009
Autor: Mue

Aufgabe
Gesucht sind alle Eigenwerte und -räume der Matrix:
[mm] \pmat{ 0 & 0 & 6 \\ \bruch{1}{2} & 0 & 0 \\ 0 & \bruch{1}{3} & 0 } [/mm]

Nun habe ich die Eigenwerte bzw. den 3-fachen Wert [mm] \lambda = 1 [/mm]  ausgerechnet.
Ich gehe weiter zur Eigenvektorberechnung mit [mm]\lambda = 1: \pmat{ -1 & 0 & 6 \\ \bruch{1}{2} & -1 & 0 \\ 0 & \bruch{1}{3} & -1 } \* \vektor{x_{1} \\ x_{2} \\ x_{3}} = \vektor{0 \\ 0 \\ 0} [/mm]

Stell ich nun ein Lösungssystem auf fehlt mir die Idee, wie ich da Werte für für meine x rausbekommen soll, die nicht 0 sind. Die Lösung ist [mm]\vektor{6 \\ 3 \\ 1}[/mm], aber rechnerisch dahin zukommen verstehe ich nicht.

Mein Gleichungssystem sieht so aus:

[mm]-1x_{1} + 6x_{3} = 0[/mm]
[mm]\bruch{1}{2} x_{1} -1x_{2} = 0[/mm]
[mm]\bruch{1}{3} x_{2} -1x_{3} = 0[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektoren berechnen!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Di 14.07.2009
Autor: Mathe-Alfi

Hallo,

also wenn du in deinem Gleichungssystem z.B. [mm] x_{3}=t, [/mm] t  [mm] \in \IR [/mm] setzt, kannst du die anderen Werte in Abhängigkeit von t ausrechnen. Also bekommst du als Lösungsvektor(Eigenvektor):

v= [mm] \vektor{6 \\ 3 \\ 1 }*t [/mm] und für t kannst du dann alle Werte einsetzten.

Lg
Mathe-Alfi

Bezug
                
Bezug
Eigenvektoren berechnen!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 Di 14.07.2009
Autor: schachuzipus

Hallo,

> Hallo,
>  
> also wenn du in deinem Gleichungssystem z.B. [mm]x_{3}=t,[/mm] t  
> [mm]\in \IR[/mm] setzt, kannst du die anderen Werte in Abhängigkeit
> von t ausrechnen. Also bekommst du als
> Lösungsvektor(Eigenvektor):
>  
> v= [mm]\vektor{6 \\ 3 \\ 1 }*t[/mm] und für t kannst du dann alle
> Werte einsetzten.

außer $t=0$ [lol]

>  
> Lg
> Mathe-Alfi


Gruß

schachuzipus

Bezug
                
Bezug
Eigenvektoren berechnen!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Di 14.07.2009
Autor: Mue

Aber wieso habe ich diese Freiheit einfach zu sagen [mm] x_{3} [/mm] is jetzt t?!
Sinn macht es, keine Frage.

Bezug
                        
Bezug
Eigenvektoren berechnen!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Di 14.07.2009
Autor: schachuzipus

Hallo [mm] $\Mu$, [/mm]

> Aber wieso habe ich diese Freiheit einfach zu sagen [mm]x_{3}[/mm]
> is jetzt t?!
>  Sinn macht es, keine Frage.  

Bringe doch mal dein (korrektes) Gleichungssystem mit Gauß in Zeilenstufenform ...

Beginne zB. damit, das [mm] $\frac{1}{2}$-fache [/mm] der 1. Zeile zur 2. Zeile zu addieren

Den Rest siehst du dann.

Du bekommst eine Nullzeile, also ein LGS mit 2 Gleichungen in 3 Unbekannten, du kannst also 1 Variable (zB. [mm] $x_3$) [/mm] frei wählen ...


LG

schachuzipus

Bezug
                                
Bezug
Eigenvektoren berechnen!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Di 14.07.2009
Autor: Mue

Ja, die Idee mit der 0-Zeile hatte ich öfters schon mal gelesen, allerdings ist bei den Aufgaben immer verlangt, nur Methoden zu benutzen, die bereits in der Vorlesung besprochen wurden. Leider konnte ich weder auf seinen Folien noch auf meinen Aufzeichnung diese Richtung erkennen. Deswegen war ich verunsichert.
Aber es ist wahrscheinlich nicht immer so, dass man eine Nullzeile finden kann und dann eine Variable frei wählt, oder?

Vielen Dank auf jedenfall.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]