matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwert
Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert: Eigenwert bestimmen
Status: (Frage) beantwortet Status 
Datum: 13:42 Di 20.06.2006
Autor: Fahnder

Hi,
Also ich habe mal eine Frage. Wenn A  [mm] \in [/mm] End(V) mit A  [mm] \circ [/mm] A  [mm] \circ [/mm] A = 4A ist. Was kann dann nicht Eigenwert von A sein?

Also habe da 4 Möglichkeiten, nämlich -2, 0, 1, 2. Also meiner Meinung nach ist es , da für Eigenwert = 0 die 4 irrelevant wäre.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Di 20.06.2006
Autor: dormant

Hallo!

Angenommen [mm] \lambda [/mm] ist ein EW von A. Dann gilt:

[mm] AAA=4A\gdw AAA*v=4A*v\gdw AAA*v=4*\lambda\*v\gdw AAA=\lambda\*E_{n} [/mm]

So, wenn [mm] \lambda [/mm] 1 ist, dann ist [mm] A=E_{n} [/mm] - kein Problem, [mm] \lambda=0: [/mm] A=0 - OK.

Jetzt, [mm] \lambda=\pm [/mm] 2. Dann ist [mm] AAA=\pm 2*E_{n} \gdw A=\pm\bruch{1}{2}E_{n}\gdw AAA=\pm\bruch{1}{8}E_{n} [/mm] - Widerspruch.

Gruß,
dormant

Bezug
                
Bezug
Eigenwert: Rückfrage
Status: (Frage) überfällig Status 
Datum: 14:30 Di 20.06.2006
Autor: Fahnder

Also das zu 0 und 1 habe ich verstande, aber könntest du mir das mit 2 und -2 nochmal genauer erklären.
Meiner Meinung nach kann nur eins der 4 Möglichkeiten falsch sein.


Bezug
                        
Bezug
Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Di 20.06.2006
Autor: dormant

Hi!

Hab jetzt ein bisschen schärfer nachgedacht und bin zu der Erkenntnis gekommen, dass meine vorige Antwort nicht korrekt war. Zweiter Versuch:

AAA=4A
(AAA)v=4Av
[mm] AA(Av)=4\lambda*v [/mm]
[mm] AA*4\lambda*v=4\lambda*v [/mm]
A(Av)=v
[mm] A\lambda*v=v [/mm]
[mm] A*v=\bruch{1}{\lambda}v [/mm]    | [mm] \lambda [/mm] ungleich 0

Jetzt hat man also ein Vektor mit zwei EW [mm] (\lambda [/mm] und [mm] \lambda^{-1}), [/mm] woraus man schließen kann, dass [mm] \lambda=\bruch{1}{\lambda}, [/mm] also kommen [mm] \pm [/mm] 2 nicht in Frage.

Gruß,
dormant

Bezug
                        
Bezug
Eigenwert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 22.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]