Eigenwert und CP < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:39 Fr 16.01.2009 | Autor: | laurel |
Aufgabe | Sei [mm] P(T)=T^m [/mm] + [mm] \beta_m_-_1T^{m+1} [/mm] + ... + [mm] \beta_0 [/mm] ein Polynom und f : V [mm] \to [/mm] V ein Endomorphismus mit der Eigenschaft, dass der Endomorphismus P(f)= [mm] f^m [/mm] + [mm] \beta_m_-_1f^{m-1} [/mm] +...+ [mm] \beta_1f [/mm] + [mm] \beta_0 id_v [/mm] die Nullabbildung V [mm] \to [/mm] V, x [mm] \mapsto [/mm] 0. Bewisen Sie, dass dann jeder Eigenwert von f eine Wurzel von P(T) ist. |
Hallo!
Könnte mir vielleicht jemand helfen. Ich sitze grade an dieser Aufgabe und komme gar nicht voran.
Meine Frage ist: was ist [mm] f^m? [/mm] Wendet man dabei mehr mals die Abbildung f an oder ist es nur um zu zeigen, dass das Eisetzen von f in das Polynom die Null ergibt also P(f)=0 ist?
Und wie kann es mir weiter helfen bei dem Beweis?
Ich hab mir überlegt:
Sei [mm] \lambda [/mm] der Eigenwert von f, dann gilt f(x)= [mm] \lambda [/mm] x
Wenn ich auf das x die Nullabbildung anwende kriege ich:
P(f(x))=( [mm] \lambda x)^m [/mm] + [mm] \beta_m_-_1 (\lambda x)^m^-^1 [/mm] + ... [mm] +\beta_1( \lambda [/mm] x) + [mm] \beta_0=0
[/mm]
Ist der Anfang richtig?
Vielen-vieln Dank im Voraus!!
gruß
|
|
|
|
> Sei [mm]P(T)=T^m[/mm] + [mm]\beta_m_-_1T^{m+1}[/mm] + ... + [mm]\beta_0[/mm] ein
> Polynom und f : V [mm]\to[/mm] V ein Endomorphismus mit der
> Eigenschaft, dass der Endomorphismus P(f)= [mm]f^m[/mm] +
> [mm]\beta_m_-_1f^{m-1}[/mm] +...+ [mm]\beta_1f[/mm] + [mm]\beta_0 id_v[/mm] die
> Nullabbildung V [mm]\to[/mm] V, x [mm]\mapsto[/mm] 0. Bewisen Sie, dass dann
> jeder Eigenwert von f eine Wurzel von P(T) ist.
> Hallo!
> Könnte mir vielleicht jemand helfen. Ich sitze grade an
> dieser Aufgabe und komme gar nicht voran.
> Meine Frage ist: was ist [mm]f^m?[/mm] Wendet man dabei mehr mals
> die Abbildung f an oder ist es nur um zu zeigen, dass das
> Eisetzen von f in das Polynom die Null ergibt also P(f)=0
> ist?
> Und wie kann es mir weiter helfen bei dem Beweis?
> Ich hab mir überlegt:
> Sei [mm]\lambda[/mm] der Eigenwert von f, dann gilt f(x)= [mm]\lambda[/mm]
> x
> Wenn ich auf das x die Nullabbildung anwende kriege ich:
> P(f(x))=( [mm]\lambda x)^m[/mm] + [mm]\beta_m_-_1 (\lambda x)^m^-^1[/mm] +
> ... [mm]+\beta_1( \lambda[/mm] x) + [mm]\beta_0=0[/mm]
> Ist der Anfang richtig?
Hallo,
teils, teils.
[mm] f^m [/mm] ist die m-malige Nacheinanderausführung von f, also [mm] f^m=\underbrace{f\circ f \circ f ....\circ f}_{m-mal}.
[/mm]
Nun überlege Dir mal, was, sofern [mm] f(x)=\lambda [/mm] x für ein [mm] x\not=0 [/mm] ist, herauskommst, wenn man [mm] f^m(x) [/mm] berechnet!
( lambda [mm] x)^m [/mm] ist es jedenfalls nicht, das ist so richtig grottig, denn was sollte das darstellen? Kannst Du Vektoren potenzieren? iIch nicht.
Wenn Du dann [mm] f^m(x) [/mm] kennst, kannst Du so weitermachen wie geplant, also
P(f)(x)= [mm]f^m[/mm] (x)+ [mm]\beta_m_-_1f^{m-1} (x)[/mm] +...+ [mm]\beta_1f[/mm] (x) + [mm]\beta_0 id_v (x)[/mm] berechnen.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:30 Sa 17.01.2009 | Autor: | laurel |
Hallo, Angela!!!!
Wenn [mm] \lambda [/mm] der Eigenwert von f ist, dann sollte es, wenn man m mal die Abbildung anwendet immer [mm] \lambdax [/mm] rauskommen. Da aber man die Vektoren nicht potenzieren kann, sollte es [mm] f^m(x) [/mm] = [mm] \lambda^mx [/mm] ergeben. oder?
wenn es so ist, dann
P(f)= [mm] \lambda^m x+\beta_m_-_1 \lambda^m^-^1x [/mm] +...+ [mm] \beta_1 \lambda [/mm] x + [mm] \beta_0 [/mm] x = 0 ???
Danke! Gruß
|
|
|
|
|
> Hallo, Angela!!!!
> Wenn [mm]\lambda[/mm] der Eigenwert von f ist, dann sollte es, wenn
> man m mal die Abbildung anwendet immer [mm]\lambdax[/mm] rauskommen.
> Da aber man die Vektoren nicht potenzieren kann, sollte es
> [mm]f^m(x)[/mm] = [mm]\lambda^mx[/mm] ergeben. oder?
> wenn es so ist, dann
> P(f)= [mm]\lambda^m x+\beta_m_-_1 \lambda^m^-^1x[/mm] +...+ [mm]\beta_1 \lambda[/mm]
> x + [mm]\beta_0[/mm] x = 0 ???
Hallo,
genau, und nun klammere x aus, bedenke, da0 x, weil es ja eine Eigenvektor ist, [mm] \not=0 [/mm] ist, und ziehe weitere Schlüsse. Du hast's jetzt fast.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:47 Sa 17.01.2009 | Autor: | laurel |
Also dann kriege ich:
P(f(x))=x( [mm] \lambda [/mm] ^m + [mm] \beta_m_-_1 \lambda^m^-^1 [/mm] + ... [mm] +\beta_1 \lambda [/mm] + [mm] \beta_0)=0
[/mm]
somit muss entweder x=0 oder die Klammern=0 sein, da aber x [mm] \not= [/mm] 0, dann bleibt nichts anderes als die Klammern.
Also ist dann das Polynom P(T) das [mm] \lambda [/mm] eingesetzt gleich null ist, weil [mm] \lambda [/mm] der Eigenwert von f ist folgt die Behauptung.
Ist es richtig?
Danke gruß
|
|
|
|
|
Hallo,
ja, das ist so richtig.
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:56 Sa 17.01.2009 | Autor: | laurel |
Danke-Danke-Danke-Danke-Danke, Angela!!!!!!!
Gruß
|
|
|
|