matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte bzw. Eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte bzw. Eigenvektoren
Eigenwerte bzw. Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte bzw. Eigenvektoren: Frage zu Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 20:22 Fr 08.07.2005
Autor: Domber

Nabend zusammen,

irgendwie verzweifel ich gerade wieder:

Berechne alle Eigenvektoren, Eigenwerte und alle Potenzen [mm] A^n [/mm] (n Elemten N)
[mm] \pmat{2 & 0 & 2 & 0 \\ 0 & 3 & 0 & -1 \\ 2 & 0 & 2 & 0 \\ 0 & -1 & 0 & 3} [/mm]

Mein Ansatz:
Ich mach erstmal Gauss und versuche die Matrix auf ne Dreiecksmatrix zu bringen. Dann kann ich die Regel anwenden "Eigenwerte einer Dreiecksmatrix sind identisch mit den Hauptdiagonalelementen".

[mm] \pmat{2 & 0 & 2 & 0 \\ 0 & 3 & 0 & -1 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0} [/mm]
Das müsste doch soweit stimmen oder?
Dann sind ja folglich die Eigenwerte 0, 2, 3 und 0 is dabei doppelter Eigenwert.
Das stimmt aber laut meiner Lösung nicht. Die sagt, dass 0, 2, 4 Eigenwerte sind und 4 doppelter.
Kann jemand helfen? Vielen dank ...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte bzw. Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Fr 08.07.2005
Autor: Nam

Hallo Domber,

ne, also ich wüsste nicht, dass das stimmt.
Um die Eigenwerte zu errechnen, bestimmt man die Nullstellen des Charakteristischen Polynoms der Matrix. Das Charakteristische Polynom von A ist wie folgt definiert:
[mm]cp_{A}(x) := \det(A - x*E_n)[/mm], wobei [mm]E_n[/mm] die Einheitsmatrix ist.


Also musst du die Determinante der Matrix
[mm]\pmat{2-x & 0 & 2 & 0 \\ 0 & 3-x & 0 & -1 \\ 2 & 0 & 2-x & 0 \\ 0 & -1 & 0 & 3-x}[/mm] ausrechnen.
Die lautet (laut Mupad): [mm]x^4-10x^3+32x^2-32x[/mm].

Offensichtlich ist 0 eine Nullstelle dieses Polynoms.
Polynomdivision mit x ergibt [mm]x^3-10x^2+32x^2-32[/mm]. Jetzt am besten Nullstellen raten: 2 ist eine Nullstelle. Also macht man eine Polynomdivision durch [mm]x-2[/mm]. Heraus kommt:
[mm]x^2-8x+16[/mm]. Die PQ Formel liefert die (doppelte) Nullstelle 4.

Also hast du insgesamt die Nullstellen 0,2 und 4 (doppelt).
Dies sind auch die Eigenwerte von A.


Für die Eigenvektoren musst du jeweils den Kern der Matrix [mm]A-0*E_n[/mm], [mm]A-2*E_n[/mm] und [mm]A-4*E_n[/mm] ausrechnen (Gauss Algorithmus). Dann erhälst du die Eigenvektoren zu den Eigenwerten 0, 2 bzw 4.



Bezug
                
Bezug
Eigenwerte bzw. Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 So 10.07.2005
Autor: Domber

Hallo Nam,

vielen Dank für Deine rasche Antwort. Ich hab es nach Deinem Schema probiert und es hat funktioniert. Das einzig schwierige bei der Sache ist die Entwicklung der Determinante, da es sich um eine (4,4) Matrix handelt.
Die oberste Zeile hat aber 2 Nullen und dann noch Sarrus-Regel und die Sache läuft relativ flott.

Ich bin dennoch ein bisschen verwirrt da die Regel die ich nannte im Papula steht (Band 2). Wahrscheinlich bringe ich wieder irgendwas durcheinander.

Thx anyway.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]