matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte und -räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und -räume
Eigenwerte und -räume < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und -räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Mi 30.01.2008
Autor: CaptainCaracho

Aufgabe
Berechnen Sie Eigenwerte und -räume der Matrix

[mm] \pmat{ -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 } [/mm]



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich weiss zu Eigenwerten gibt es 1000 Fragen.. und das ist auch das Problem. Habe jetzt schon dutzende Fragen durchforstet, aber nirgendwo konnte ich wirklich mein Problem finden, da schon Eigenvektoren o.Ä. bereits errechnet wurde... Nur ich weiss halt nicht wie man das errechnet...
Kann mir da vielleicht einer helfen, die Dinge mal kurz zu erklären bzw mir den Ansatz zu liefern, dass ich diese Aufgabe verstehe??

Lieben Gruß

        
Bezug
Eigenwerte und -räume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mi 30.01.2008
Autor: schachuzipus

Hallo Sven und herzlich [willkommenmr],


Die Eigenwerte der Matrix [mm] $A=\pmat{ -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 } [/mm] $ sind die Nullstellen des charakteristischen Polynoms [mm] $cp(\lambda)$ [/mm]

Dieses berechnest du über die Determinante von [mm] $A-\lambda\cdot{}\mathnn{E}_3$ [/mm]

Also:

[mm] $A-\lambda\cdot{}\mathnn{E}_3=\pmat{ -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 }-\lambda\cdot{}\pmat{ 1 & 0 & 0 \\ 0& 1 & 0 \\0 & 0 & 1 }=\pmat{ -3-\lambda & 1 & -1 \\ -7 & 5-\lambda & -1 \\ -6 & 6 & -2-\lambda }$ [/mm]

Rechne diese Determinante aus (mit Sarrus). Das liefert dir das charakteristische Polynom [mm] $cp(\lambda)$ [/mm] in der Variable [mm] $\lambda$ [/mm]

Dessen Nullstellen sind dann die Eigenwerte der Matrix A

Um den entsprechenden Eigenraum zu einem Eigenwert [mm] $\lambda_i$ [/mm] zu bestimmen, berechne den [mm] $Kern(A-\lambda_i\cdot{}\mathbb{E}_3)$ [/mm]

Also die Lösungsmenge der Gleichung [mm] $(A-\lambda_i\cdot{}\mathbb{E}_3)\cdot{}x=0$ [/mm]

Diese Lösungsmenge ist der [mm] $Kern(A-\lambda_i\cdot{}\mathbb{E}_3)=Eig(A,\lambda_i)$ [/mm]

Dann mal viel Spaß ;-)


LG

schachuzipus

Bezug
                
Bezug
Eigenwerte und -räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mi 30.01.2008
Autor: CaptainCaracho

Danke für die herzliche Aufnahme, musste schon ein wenig schmunzeln :P

Also irgendwie bringt mich das nicht weiter... sorry :( bin halt en Mathe Loser^^

Also woher/was soll die diagonalisierte Matrix? Was ist der Kern,E3....................

Und das mit dem Satz des Sarrus: Habe den jetzt schon oft bei Determinanten angewandt aber bei Eigenwerten komm ich niemals auf die richtig Polynomgleichung :-( :-(

Bezug
                        
Bezug
Eigenwerte und -räume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mi 30.01.2008
Autor: schachuzipus

Hallo nochmal,

[mm] $\mathbb{E}_3$ [/mm] soll die [mm] $3\times [/mm] 3$-Einheitsmatrix bezeichnen, also [mm] $\pmat{1&0&0\\0&1&0\\0&0&1}$ [/mm]

Das geht doch aus dem, was ich geschrieben habe, deutlich hervor - oder nicht??

Dann musst du die Determinante der Matrix [mm] (A-\lambda\mathbb{E}_3) [/mm] berechnen.

Wie [mm] A-\lambda\mathbb{E}_3 [/mm] aussieht, habe ich dir auch hingeschrieben...

Versuch mal selber, die Determinante davon zu berechnen, wenn du's mit Sarrus nicht hinbekommst, kannst du nach ner beliebigen Zeile/Spalte entwickeln (Laplace)

Schau halt mal in die VL, da ist ja irgendwie und irgendwo definiert worden, wie man ne Determinante berechnet ...

Dann die NST von dem char. Polynom bestimmen, dass du bei der Berechnung der Det. erhältst.

Das sind deine Eigenwerte

Dann konkret einen Eigenwert [mm] $\mu$ [/mm] einsetzen und folgende (Matrix-)Gleichung lösen:

[mm] $(A-\mu\mathbb{E}_3)\cdot{}\vec{x}=\vec{0}$ [/mm]

Diese Lösungsmenge dieser (Matrix-)Gleichung bezeichnet man auch als Kern der Matrix [mm] A-\mu\mathbb{E}_3 [/mm]

Nun versuche du dich mal an der Determinante, den Rest nehmen wir uns dann später vor...

LG

schachuzipus

Bezug
                                
Bezug
Eigenwerte und -räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mi 30.01.2008
Autor: CaptainCaracho

noch ne kleine frage. hab mich mal an was anderes gemacht... also ner anderen aufgabe wo ich die rechnung schon habe.
hier steht: [mm] -\lambda [/mm] ( [mm] \lambda² [/mm] - 12) = -16
NST sind 4 und -2... wie les ich die ab??

habs jetzt irgendwie gerafft bekommen. probieren geht über studieren :P

Bezug
                                        
Bezug
Eigenwerte und -räume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 30.01.2008
Autor: angela.h.b.


> noch ne kleine frage. hab mich mal an was anderes
> gemacht... also ner anderen aufgabe wo ich die rechnung
> schon habe.
>  hier steht: [mm]-\lambda[/mm] ( [mm]\lambda²[/mm] - 12) = -16
>  NST sind 4 und -2... wie les ich die ab??
>  
> habs jetzt irgendwie gerafft bekommen. probieren geht über
> studieren :P

Hallo,

mit ausprobieren/raten hast Du schon einen guten Weg eingeschlagen:

>  [mm]-\lambda[/mm] ( [mm]\lambda²[/mm] - 12) = -16

<==> [mm] \lambda^3-12\lambda [/mm] -16=0

Nulstellenraten ergibt: 4 ist eine Nullstelle.

Nun kannst Du (x-4) ausklammern (Polynomdivision) und Du erhältst:

[mm] 0=\lambda^3-12\lambda -16=(x-4)(x^2+4x+4) [/mm]

Wenn Du die Nullstellen des 2. Faktors nicht sofort siehst, kannst Du sie ausrechen (quadratische Gleichung), und Du erhältst

[mm] 0=\lambda^3-12\lambda -16=(x-4)(x^2+4x+4)=(x-4)(x+2)^2. [/mm]

Gruß v. Angela



Bezug
                                                
Bezug
Eigenwerte und -räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Mi 30.01.2008
Autor: CaptainCaracho

also habe jetzt die nullstellen und setze diese in die gleichung ein sodass dort steht: [mm] \pmat{ -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 } [/mm]

wie soll ich das jetzt auflösen. hab hier als Lösung stehen

[mm] \pmat{ -3 & -3 & 3 \\ 0 & -12 & 6 } [/mm] = 0

|R * [mm] \pmat{ 1 & 1 & 2 } [/mm]

klar. 12/6 ergibt 2 aber das müsste dch irgendwie x3 = 6/12 x2 heissen oder nicht??? bin grad leicht verwirrt^^



Bezug
                                                        
Bezug
Eigenwerte und -räume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mi 30.01.2008
Autor: schachuzipus

Hallo Sven,


> also habe jetzt die nullstellen und setze diese in die
> gleichung ein sodass dort steht: [mm]\pmat{ -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 }[/mm] [kopfkratz3]

Ich weiß beim besten Willen nicht, wie du auf diese Matrix kommst??

Wenn du nun mit den beiden Nusstellen [mm] $\lambda_1=-2, \lmabda_2=4$ [/mm] des char. Poylnoms (Eigenwerte) den Kern von [mm] $A-\lambda_i\cdot{}\mathbb{E}_3$ [/mm] berechnest, wie ich oben geschrieben habe, kommst du doch auf:

Für [mm] $\lambda_1=-2$: [/mm]

[mm] $A-(-2)\cdot{}\mathbb{E}_3=\pmat{ -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 }+2\cdot{}\pmat{ 1& 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }=\pmat{ -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 }+\pmat{ 2& 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 }=\underbrace{\pmat{ -1 & 1 & -1 \\ -7 & 7 & -1 \\ -6 & 6 & 0}}_{=:B}$ [/mm]

Nun musst du den Kern von B bestimmen, also die Lösungsmenge von [mm] $B\cdot{}\vec{x}=\vec{0}$ [/mm]

Dazu bringe B in Zeilenstufenform, dann kannst du das ablesen

Für [mm] $\lambda_2=4$ [/mm] genauso:

[mm] $A-4\cdot{}\mathbb{E}_3=\pmat{ -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 }-4\cdot{}\pmat{ 1& 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }=\pmat{ -7 & 1 & -1 \\ -7 & 1 & -1 \\ -6 & 6 & -6 }$ [/mm]

Dann wieder diesen Kern bestimmen
  

> wie soll ich das jetzt auflösen. hab hier als Lösung stehen
>
> [mm]\pmat{ -3 & -3 & 3 \\ 0 & -12 & 6 }[/mm] = 0
>  
> |R * [mm]\pmat{ 1 & 1 & 2 }[/mm]
>  
> klar. 12/6 ergibt 2 aber das müsste dch irgendwie x3 = 6/12
> x2 heissen oder nicht??? bin grad leicht verwirrt^^

ich auch, k.A., was damit gemeint sein soll [kopfkratz3]


LG

schachuzipus


Bezug
                                                                
Bezug
Eigenwerte und -räume: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:57 Do 31.01.2008
Autor: CaptainCaracho

also dann habe ich x1, x2, x3 raus. das is dann der eigenvektor??

Bezug
                                                                        
Bezug
Eigenwerte und -räume: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Do 31.01.2008
Autor: angela.h.b.


> also dann habe ich x1, x2, x3 raus. das is dann der
> eigenvektor??

Hallo,

Du sprichst in Rätseln...

WAS hast Du für [mm] x_1, x_2, x_3 [/mm]  heraus, und zu welcher Matrix und zu welchem Eigenwert soll das ein Eigenvektor sein.

Wenn Du diese Informationen lieferst, wird man über falsch und richtig befinden können.

Gruß v. Angela


Bezug
                                                                                
Bezug
Eigenwerte und -räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Do 31.01.2008
Autor: CaptainCaracho

Also, du sagtest ja:
Nun musst du den Kern von B bestimmen, also die Lösungsmenge von $ [mm] B\cdot{}\vec{x}=\vec{0} [/mm] $

Für mich bedeuted das, dass ich ein LGS rechnen muss und die Gleichung gleich null... dann bekomme ich da 3Werte heraus

Bezug
                                                                                        
Bezug
Eigenwerte und -räume: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Do 31.01.2008
Autor: angela.h.b.


> Also, du sagtest ja:
>  Nun musst du den Kern von B bestimmen, also die
> Lösungsmenge von [mm]B\cdot{}\vec{x}=\vec{0}[/mm]
>  
> Für mich bedeuted das, dass ich ein LGS rechnen muss und
> die Gleichung gleich null... dann bekomme ich da 3Werte
> heraus

Hallo,

wenn Du den Kern der richtigen Matrix richtig berechnet hast  - also das richtige LGS richtig gelöst -, hast Du einen Eigenvektor gefunden.

Es ist in der tat also ein LGS zu lösen.

OB Du es richtig getan hast, weiß ich natürlich nicht.

Du kannst Deinen Eigenvektor aber selbst testen:

wenn Du die Ausgangsmatrix mit diesem multiplizierst, muß Eigenwert*Eigenvektor herauskommen.

Gruß v. Angela





Bezug
                                                                                                
Bezug
Eigenwerte und -räume: char. Polynom mal anders
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Do 31.01.2008
Autor: crashby

Hey,

ich versuch dir mal ein bissel bei dem char. Polynom zu helfen.

Es gibt dort eine Formel und zwar diese hier:

$ [mm] p(\lambda)=-\lambda^3+spur [/mm] A [mm] \lambda^2-c_2\cdot \lambda+det [/mm] A $ (Für 3 x 3 Matrizen!!! )

Allgemein:

$ A= [mm] \pmat{ a & b & c \\ d & e & f \\ g& h & j} [/mm] $


$ [mm] c_2 [/mm] $ ist für $ A= [mm] \pmat{ a & b & c \\ d & e & f \\ g& h & j} [/mm] $ definiert als

[mm] $c_2 [/mm] = [mm] \vmat{ a&b\\d & e}+\vmat{a &c\\g & j}+\vmat{e&f\\h & j}$ [/mm]

Sieht Anfangs ein bissel komsich aus aber ich nehme mir jetzt deine Matrix und zeige dir das mal.

Wir haben also die Matrix A mit $ [mm] A=\pmat{ -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 } [/mm] $

Ok was ist zum Teufel die Spur einer MAtrix?

Ganz einfach, man addiert die Elemente der Hauptdiagonalen

$ spur A=-3+5-2 =0 $

Für $ [mm] c_2 [/mm] $ gilt: $ [mm] c_2 [/mm] = [mm] \vmat{ -3 & 1\\-7 & 5}+\vmat{ -3 & -1\\-6 & -2} +\vmat{ 5 & -1\\6 & -2}=-8-4=-12$ [/mm]

$ det A = 16 $ Das bekommt man mit Sarrus raus

und damit heißt das cbhar. Polynom:

$ [mm] p(\lamda)=-\lambda^3-0\cdot \lambda +12\lambda +16=-\lambda^3 +12\lambda [/mm] +16 $
$ [mm] p(\lambda)=\lambda^3 +12\lambda [/mm] -16$

Nun gut das ist ein bissel mehr Arbeit aber so kann man den $ [mm] \lambda [/mm] $ 's aus den Weg gehen, wenn man die Determinante mit Sarrus berechnet.

lg George

Bezug
                                                                                                        
Bezug
Eigenwerte und -räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Fr 01.02.2008
Autor: CaptainCaracho

dankeschön!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]