matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte und EV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und EV
Eigenwerte und EV < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und EV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Mo 22.06.2009
Autor: Unk

Aufgabe
Sei [mm] v_1,...,v_4 [/mm] Basis eines reellen Vektorraums.
[mm] f:V\rightarrow [/mm] V mit [mm] f(v_i)=v_{i+1} [/mm] für [mm] 1\leq i\leq [/mm] 3 und [mm] f(v_4)=1. [/mm]

Bestimme alle Eigenwerte und Eigenvektoren.

Hallo,

mal eine kurze, übersichtlichere Aufgabe.
Für Eigenwerte brauche ich das charakteristische Polynom.
Wenn ich die Darstellungsmatrix meiner Basis betrachte, so erhalte ich:
[mm] M=(v_2,v_3,v_4,v_1). [/mm]
Doch wie komme ich nun näher an meine Eigenwerte?
Ich berechne eigtl. [mm] det(\lambda [/mm] E-M). Das geht aber hier so schlecht oder?
Wo liegt der Knackpunkt?

        
Bezug
Eigenwerte und EV: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Di 23.06.2009
Autor: leduart

Hallo
Nimm doch einfach den [mm] \IR^4 [/mm] mit der Standardbasis als Repraesentant von V dann ist es ganz einfach.
gruss leduart

Bezug
                
Bezug
Eigenwerte und EV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:30 Di 23.06.2009
Autor: Unk


> Hallo
>  Nimm doch einfach den [mm]\IR^4[/mm] mit der Standardbasis als
> Repraesentant von V dann ist es ganz einfach.
>  gruss leduart

Ja daran hatte ich auch schon gedacht. Aber darf man das so einfach. Dann bekomme ich doch Eigenwerte heraus die nur für meine kanonische Basis gelten oder? Andererseits müsste ja jeder Darstellungsmatrix bzgl einer anderen Basis zu meiner Matrix M ähnlich sein, also das gleiche charakteristische Polynom habe. Womit meine obige Frage mit Nein beantwortet werden könnte oder?
Muss man das Ergebnis bzgl. der kanonischen Basis noch irgendwie verallgemeinern?

Bezug
                        
Bezug
Eigenwerte und EV: Antwort
Status: (Antwort) fertig Status 
Datum: 02:56 Di 23.06.2009
Autor: pelzig

Also die Darstellungsmatrix von f bezüglich der Basis [mm] $\{v_i\}_{1\le i\le 4}$ [/mm] ist [mm] $$\pmat{0&0&0&1\\1&0&0&0\\0&1&0&0\\0&0&1&0}$$ [/mm] Jetzt rechne einfach davon erstmal die Eigenwerte und Eigenvektoren aus. Dass man das so machen kann, lässt sich so erklären:

Nach Wahl der Basis [mm] $\{v_1,v_2,v_3,v_4\}$ [/mm] hast du V und [mm] $\IR^4$ [/mm] kanonisch durch die lineare Abbildung [mm] $\Phi(v_i):=e_i$ [/mm] identifiziert. Es gibt genau eine lineare Abbildung [mm] $A:\IR^4\to\IR^4$ [/mm] mit [mm] $f=\Phi^{-1}\circ A\circ\Phi$ [/mm] (nämlich [mm] $A:=\Phi\circ f\circ\Phi^{-1}$ [/mm] :-)) und damit gilt, weil [mm] $\Phi$ [/mm] linear [mm] ist$$A(v)=\lambda v\gdw f(\Phi^{-1}(v))=\lambda\Phi^{-1}(v)$$ [/mm] Damit haben  wir gezeigt: [mm] \lambda [/mm] ist genau dann Eigenwert von A, wenn [mm] \lambda [/mm] einer von f ist und v ist genau dann Eigenvektor von A, wenn [mm] $\Phi^{-1}(v)$ [/mm] einer von f ist.

Gruß, Robert

Bezug
        
Bezug
Eigenwerte und EV: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Di 23.06.2009
Autor: fred97


> Sei [mm]v_1,...,v_4[/mm] Basis eines reellen Vektorraums.
>  [mm]f:V\rightarrow[/mm] V mit [mm]f(v_i)=v_{i+1}[/mm] für [mm]1\leq i\leq[/mm] 3 und
> [mm]f(v_4)=1.[/mm]
>  
> Bestimme alle Eigenwerte und Eigenvektoren.
>  Hallo,
>  
> mal eine kurze, übersichtlichere Aufgabe.
>  Für Eigenwerte brauche ich das charakteristische Polynom.
>  Wenn ich die Darstellungsmatrix meiner Basis betrachte, so
> erhalte ich:
>  [mm]M=(v_2,v_3,v_4,v_1).[/mm]
>  Doch wie komme ich nun näher an meine Eigenwerte?
>  Ich berechne eigtl. [mm]det(\lambda[/mm] E-M). Das geht aber hier
> so schlecht oder?
>  Wo liegt der Knackpunkt?


Mach es so wie pelzig es vorgeschlagen hat, oder geh einfach auf die Def. zurück:

Sie  [mm] \lambda [/mm] ein Eigenwert und v ein zugehöriger Eigenvektor, also

                $v [mm] \not=0 [/mm] $ und $v = [mm] \alpha_1v_1+ \alpha_2v_2+ \alpha_3v_3+ \alpha_4v_4$ [/mm]


Aus [mm] $f(v)=\lambda [/mm] v$ folgt dann:

              $ [mm] \alpha_4 =\lambda \alpha_1, \alpha_1 =\lambda \alpha_2, \alpha_2 =\lambda \alpha_3, \alpha_3 =\lambda \alpha_4$ [/mm]

Hieraus folgt dann:

             [mm] $\alpha_4 \not=0$ [/mm] und [mm] $\alpha_4 [/mm] = [mm] \lambda \alpha_1= \lambda^2 \alpha_2= \lambda^3 \alpha_3= \lambda^4 \alpha_4$ [/mm]

folglich: [mm] $\lambda= \pm1$ [/mm]

Für [mm] $\lambda [/mm] = 1$ ergibt sich $v = [mm] v_1+v_2+v_3+v_4$ [/mm]

Für [mm] $\lambda [/mm] = -1$ ergibt sich $v = [mm] v_1-v_2+v_3-v_4$ [/mm]


FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]