matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenEigenwerte und Eigenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Eigenwerte und Eigenfunktion
Eigenwerte und Eigenfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und Eigenfunktion: Sturm Louiville
Status: (Frage) beantwortet Status 
Datum: 09:38 Fr 23.03.2018
Autor: Cash33

Aufgabe
Hier eine Aufgabe abgetippt im Anhang ,dass man sie gut lesen kann.

Mein Ansatz für den ersten Teil kommt jetzt:
[mm] $\lambda [/mm] >0$
[mm] $-u^2 [/mm] = [mm] \lambda$ [/mm]

[mm] $u^2 [/mm] = [mm] -\lambda$ [/mm]

$u1,2 =    [mm] i*\wurzel{\lambda}$ [/mm]

komplex ,also allgemeine Lösung :

$y(x) = [mm] c_1*e^x*sin(\wurzel{\lambda}*x) +c_2*e^x*cos(\wurzel{\lambda}*x) [/mm]

x= 1 und einmal 0 eingesetzt?
$y(0) [mm] =c_2 [/mm] = 0$

$y(1) = [mm] e^1*sin(\wurzel{\lambda})= [/mm] 0$

[mm] $\lambda [/mm] = [mm] n^2*pi^2$ [/mm]      richtig ?

Fall [mm] $\lambda [/mm] <0$

[mm] $-u^2 [/mm] = [mm] -\lambda$ [/mm]

$u1,2 = [mm] \pm\wurzel{\lambda}$ [/mm]


$y(x) = [mm] c_1*e^{\wurzel{\lambda}*x} +c_2 [/mm] * [mm] e^{-\wurzel{\lambda}*x}$ [/mm]

$y(0) = [mm] c_1 =c_2 [/mm] = 0$

triviale Lösung

[mm] $\lambda [/mm] = 0$

[mm] $-u^2 [/mm] = 0$

$y(x) = [mm] c_1*x+c_2 [/mm] $

[mm] $c_1 [/mm] = 0$ [mm] $c_2 [/mm] = 0$
Elemente von R .


Passt das alles soweit ?



AUf keiner Seite gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Eigenwerte und Eigenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Fr 23.03.2018
Autor: fred97


> Hier eine Aufgabe abgetippt im Anhang ,dass man sie gut
> lesen kann.

Die Aufgabe kann man gut lesen. Deine Lösung aber nicht ......


Vorweg: ich helfe gern. Aber mir vergeht die Helferei, wenn ich eine deratig schlampige und kaum lesbare Ausarbeitung wie Deine vor der Nase habe.

Tipp für die Zukunft: strenge Dich an, lesbare Beiträge zu formulieren.


Noch etwas: was ist denn der Aufgabensteller von Beruf ? Vollpfosten ?

Warum schreibt dieser Vollpfosten [mm] u_{xx} [/mm] ? Zuerst dachte ich, es handelt sich um eine partielle Differentialgleichung. Aus dem weiteren Zusammenhang ist mir dann klar geworden, dass u eine Funktion von einer Variablen ist. Mein Gott, dann schreibe ich doch $u''$ und nicht  [mm] u_{xx}. [/mm]


>  
> Mein Ansatz für den ersten Teil kommt jetzt:
>  lambda >0
>  [mm]-u^2[/mm] = lambda
>  
> [mm]u^2[/mm] = -lambda
>
> u1,2 =    [mm]i*\wurzel{lambda}[/mm]
>  
> komplex ,also allgemeine Lösung :
>  
> y(x) = [mm]c_1*e^x*sin(\wurzel{lambda}*x) +c_2*e^x*cos(\wurzel{lambda}*x)[/mm]


Das ist nicht richtig( wieso plötzlich y und nicht u ????). Wo kommt das [mm] e^x [/mm] denn her ?? Die allgemeine Lösung lautet:

$u(x) = [mm] c_1*sin(\wurzel{\lambda}*x) +c_2*cos(\wurzel{\lambda}*x)$ [/mm]


>
> x= 1 und einmal 0 eingesetzt?
>  y(0) [mm]=c_2[/mm] = 0
>  
> y(1) = [mm]e^1*sin(\wurzel{lambda})=[/mm] 0
>  
> lambda = [mm]n^2*pi^2[/mm]      richtig ?


Das stimmt jetz (fast) wieder. Besser: [mm] \lambda =k^2 \pi^2, [/mm] mit $k [mm] \in \IZ $\setminus \{0\}. [/mm]


>  
> Fall lambda <0
>  
> [mm]-u^2[/mm] = -lambda
>
> u1,2 = [mm]+-\wurzel{lambda}[/mm]

Nö. Sondern [mm] \wurzel{- \lambda} [/mm]

>  
>
> y(x) = [mm]c_1*e^{\wurzel{lambda}*x} +c_2[/mm] *
> [mm]e^{-\wurzel{lambda}*x}[/mm]


Also $u(x) = [mm] c_1*e^{\wurzel{-\lambda}*x} +c_2 [/mm] * [mm] e^{-\wurzel{-\lambda}*x}$ [/mm]

>  
> y(0) = [mm]c_1 =c_2[/mm] = 0
>  
> triviale Lösung

Das stimmt zwar, aber begründen solltest Du das !


>  
> lambda = 0
>  
> [mm]-u^2[/mm] = 0
>  
> y(x) = [mm]c_1*x+c_2[/mm]
>
> [mm]c_1[/mm] = 0 [mm]c_2[/mm] = 0


Das stimmt.


> Elemente von R .

Was soll das ?

>  
>
> Passt das alles soweit ?
>  
> AUf keiner Seite gestellt


Bezug
                
Bezug
Eigenwerte und Eigenfunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:49 Fr 23.03.2018
Autor: Cash33


> > Hier eine Aufgabe abgetippt im Anhang ,dass man sie gut
> > lesen kann.
>  
> Die Aufgabe kann man gut lesen. Deine Lösung aber nicht
> ......
>  
>
> Vorweg: ich helfe gern. Aber mir vergeht die Helferei, wenn
> ich eine deratig schlampige und kaum lesbare Ausarbeitung
> wie Deine vor der Nase habe.
>
> Tipp für die Zukunft: strenge Dich an, lesbare Beiträge
> zu formulieren.
>  
>
> Noch etwas: was ist denn der Aufgabensteller von Beruf ?
> Vollpfosten ?
>  
> Warum schreibt dieser Vollpfosten [mm]u_{xx}[/mm] ? Zuerst dachte
> ich, es handelt sich um eine partielle
> Differentialgleichung. Aus dem weiteren Zusammenhang ist
> mir dann klar geworden, dass u eine Funktion von einer
> Variablen ist. Mein Gott, dann schreibe ich doch [mm]u''[/mm] und
> nicht  [mm]u_{xx}.[/mm]
>  
>
> >  

> > Mein Ansatz für den ersten Teil kommt jetzt:
>  >  lambda >0
>  >  [mm]-u^2[/mm] = lambda
>  >  
> > [mm]u^2[/mm] = -lambda
> >
> > u1,2 =    [mm]i*\wurzel{lambda}[/mm]
>  >  
> > komplex ,also allgemeine Lösung :
>  >  
> > y(x) = [mm]c_1*e^x*sin(\wurzel{lambda}*x) +c_2*e^x*cos(\wurzel{lambda}*x)[/mm]
>
>
> Das ist nicht richtig( wieso plötzlich y und nicht u
> ????). Wo kommt das [mm]e^x[/mm] denn her ?? Die allgemeine Lösung
> lautet:
>  
> [mm]u(x) = c_1*sin(\wurzel{\lambda}*x) +c_2*cos(\wurzel{\lambda}*x)[/mm]
>
>
> >
> > x= 1 und einmal 0 eingesetzt?
>  >  y(0) [mm]=c_2[/mm] = 0
>  >  
> > y(1) = [mm]e^1*sin(\wurzel{lambda})=[/mm] 0
>  >  
> > lambda = [mm]n^2*pi^2[/mm]      richtig ?
>  
>
> Das stimmt jetz (fast) wieder. Besser: [mm]\lambda =k^2 \pi^2,[/mm]
> mit [mm]k \in \IZ[/mm][mm] \setminus \{0\}.[/mm]
>  
>
> >  

> > Fall lambda <0
>  >  
> > [mm]-u^2[/mm] = -lambda
> >
> > u1,2 = [mm]+-\wurzel{lambda}[/mm]
>  
> Nö. Sondern [mm]\wurzel{- \lambda}[/mm]

Wie kommst du auf das - Zeichen beim lambda unter der Wurzel ?

Das verstehe ich nicht

>  >  
> >
> > y(x) = [mm]c_1*e^{\wurzel{lambda}*x} +c_2[/mm] *
> > [mm]e^{-\wurzel{lambda}*x}[/mm]
>  
>
> Also [mm]u(x) = c_1*e^{\wurzel{-\lambda}*x} +c_2 * e^{-\wurzel{-\lambda}*x}[/mm]
>  
> >  

> > y(0) = [mm]c_1 =c_2[/mm] = 0
>  >  
> > triviale Lösung
>  
> Das stimmt zwar, aber begründen solltest Du das !
>  
>
> >  

> > lambda = 0
>  >  
> > [mm]-u^2[/mm] = 0
>  >  
> > y(x) = [mm]c_1*x+c_2[/mm]
> >
> > [mm]c_1[/mm] = 0 [mm]c_2[/mm] = 0
>
>
> Das stimmt.
>  
>
> > Elemente von R .
>  
> Was soll das ?
> >  

> >
> > Passt das alles soweit ?
>  >  
> > AUf keiner Seite gestellt
>  


Bezug
                        
Bezug
Eigenwerte und Eigenfunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:26 Fr 23.03.2018
Autor: Cash33

Fall lambda<0

Woher kommt das Minus Zeichen unter der Wurzel ?

Bezug
                                
Bezug
Eigenwerte und Eigenfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 25.03.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Eigenwerte und Eigenfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 25.03.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Eigenwerte und Eigenfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Fr 23.03.2018
Autor: chrisno

Ich habe mir mal die Freiheit genommen, ein paar Dollarzeichen und Backslashes einzustreuen. Ich finde es so netter zu lesen. Schau mal in den Text rein, dann siehst Du, dass es wenig Mühe macht.
https://iss.pairsolutions.de/#calendar

Bezug
                
Bezug
Eigenwerte und Eigenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Sa 24.03.2018
Autor: Cash33

Warum steht bei deinem korrigierten Teil ein -lambda vor der Wurzel ?

Habe ich diesen Fall nicht schon für den komplexen Fall?

Die ursprungsgleichung ist ja

[mm] -u^2 [/mm] = lambda

für den Fall lambda <0

Muss man da nicht einfach auf der rechten Seite einfach -lambda schreiben ?

[mm] -u^2= [/mm] -lambda



Das ergibt dann nach der Vorzeichenänderungen:

[mm] u^2=lambda [/mm]

Und jetzt die Wurzel ziehen ?


Bezug
                        
Bezug
Eigenwerte und Eigenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Sa 24.03.2018
Autor: fred97


> Warum steht bei deinem korrigierten Teil ein -lambda vor
> der Wurzel ?
>  
> Habe ich diesen Fall nicht schon für den komplexen Fall?
>  
> Die ursprungsgleichung ist ja
>
> [mm]-u^2[/mm] = lambda
>  
> für den Fall lambda <0
>  
> Muss man da nicht einfach auf der rechten Seite einfach
> -lambda schreiben ?
>  
> [mm]-u^2=[/mm] -lambda

Das ist doch  völliger Unsinn.  Wir hätten  dann [mm] \lambda =-\lambda, [/mm]  also [mm] \lambda [/mm] =0.

>  
>
>
> Das ergibt dann nach der Vorzeichenänderungen:
>  
> [mm]u^2=lambda[/mm]
>
> Und jetzt die Wurzel ziehen ?

Quatsch.  Wir haben [mm] u^2=-\lambda [/mm] und [mm] -\lambda [/mm] >0. Ist der Groschen  nun  endlich  gefallen?

>  


Bezug
                                
Bezug
Eigenwerte und Eigenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:19 Sa 24.03.2018
Autor: Cash33

Danke fred . Jetzt peile ich es endlich.

Dumm von mir.

Hast du auch paar tipps für die ii?

Bezug
                                        
Bezug
Eigenwerte und Eigenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 Mo 26.03.2018
Autor: fred97


> Danke fred . Jetzt peile ich es endlich.

schön !


>  
> Dumm von mir.
>  
> Hast du auch paar tipps für die ii?

Für diesen Teil wäre es wichtig zu wissen, welche Sätze Ihr bezüglich Fourierreihen hattet.

f habe die Darstellung

[mm] $f(x)=\alpha_0/2+ \sum_{n=1}^{\infty}(\alpha_n \cos(2 \pi [/mm] n x)+ [mm] \beta_n \sin( [/mm] 2 [mm] \pi [/mm] n x))$.

Für die Lösung u machst Du den Ansatz

[mm] $u(x)=a_0/2+ \sum_{n=1}^{\infty}(a_n \cos(2 \pi [/mm] n x)+ [mm] b_n \sin( [/mm] 2 [mm] \pi [/mm] n x))$.

Gehe damit in die DGL ein, mache Koeffizientenvergleich und arbeite die Randbedingungen ein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 5h 33m 3. xXMathe_NoobXx
USons/Binomialentwicklung
Status vor 10h 16m 1. Hela123
UStoc/Beweis Varianz von Summe
Status vor 11h 25m 3. mathnoob9
UWTheo/Konstruktion von ZV
Status vor 20h 29m 7. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 1d 13h 21m 3. Dom_89
SDiffRech/Ableitung bilden
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]