matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte und char. Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und char. Polynom
Eigenwerte und char. Polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und char. Polynom: Frage
Status: (Frage) beantwortet Status 
Datum: 15:23 So 01.05.2005
Autor: proxi

Hallo ihr!
Hänge bei einer Aufgabe ziemlich. Mien Problem ist glaube ich, dass ich nicht weiß, was ich aus der Voraussetzung genau zu benutzen habe... Hier ist sie:
Sei A eine reelle (n,n)-Matrix, deren char. Polynom in Linearfaktoren zerfällt. Zeigen Sie:
a) Ist 1 einziger EW von a und Dim des zugehörigen Eigenraums =1, so sind A und [mm] A^2 [/mm] ähnlich.
b) Ist A regulär und sind A und [mm] A^2 [/mm] ähnlch, so ist 1 einziger EW.

Und nun meine (zugegebenermaßen etwas dürftigen...) Überlegungen:
a) ich weiß, dass:
A und [mm] A^2 [/mm] haben das gleiche char. Pol. und zwar p [mm] =-1^n (1-x)^n. [/mm]
minimalpol. von A ist damit m=(x-1)°^s mit s zwischen 1 und n.
dim (A-E) = 1.
und zeigen muss ich, dass es eine Matrix S gibt, so dass A=SA^2S^-1.
Nur erschließt sich für mich kein Zusammenhang zwischen den Voraussetzungen und dem was ich zeigen möchte. Speziell mit der Dimension des Eigenraumes kann ich irgendwie nichts anfangen.

und bei der b) ist vorausgesetzt die Existenz von A^-1 und von einem S wie oben, aber hier komme ich auch nicht wirklich weiter.

Wäre euch für jede Hilfe sehr dankbar! :)

Gruß, Matej

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte und char. Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Mi 04.05.2005
Autor: Mathemagier

Hallo Matej!

>  a) ich weiß, dass:
>  A und [mm]A^2[/mm] haben das gleiche char. Pol. und zwar p > [mm]=-1^n (1-x)^n.[/mm]

Nein.
A ist ähnlich zu einer nxn-Nullmatrix mit nur einer Eins auf der Hauptdiagonalen. Also ist das char. Polynom [mm] $\chi_{A} (\lambda)=(1-\lambda)*(-\lambda)^{n-1}$. [/mm]
Wenn du noch Hilfe brauchst (die Frage ist mittlerweile abgelaufen), melde dich nochmal, weil die Antwort doch ein bisschen Arbeit macht und mathematisch nicht sehr ergiebig ist.

Liebe Grüße,
Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]