matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeEindeutig Lösbares G-System?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Eindeutig Lösbares G-System?
Eindeutig Lösbares G-System? < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindeutig Lösbares G-System?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Sa 04.11.2006
Autor: Informacao

Aufgabe
Geben Sie an, ob das folgende Gleichungssystem
a. lösbar, aber nicht eindeutig lösbar ist,
b. eindeutig lösbar ist
c. nicht lösbar ist

1. [mm] \pmat{ 1 & 3 & 3 \\ 2 & 7 & 9 \\ 0 & 0 & 0 } [/mm] x = [mm] \vektor{1 \\ 9 \\ 0} [/mm] ..
2. [mm] \pmat{ 1 & 3 & 3 \\ 2 & 7 & 9 \\ 0 & 0 & 0 } [/mm] x = 0

Hallo,

ich bin mir garnicht sicher, wie ich entscheiden soll, wie und ob das lösbar ist..am besten ich löse das dafür mal auf..aber ich weiß garnicht wo ich anfangen soll...könnt ihr mir bitte mal einen anschubs geben?

viele grüße
informacao

        
Bezug
Eindeutig Lösbares G-System?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Sa 04.11.2006
Autor: hase-hh

moin info!

aufgabe 1

das gleichungssystem hat beliebig viele lösungen

[mm] \pmat{ 1 & 3 & 3 \\ 2 & 7 & 9 \\ 0 & 0 & 0 } [/mm]  = [mm] \vektor{1 \\ 9 \\ 0 } [/mm]

man kann bereits an dieser stelle sehen, dass das gleichungssystem unendlich viele lösungen hat, wegen der 3. Zeile in der nur nullen stehen.

wir formen trotzdem mal um und stellen die komplette dreiecksform her. dazu nehmen wir gleichung I mal -2 und rechnen anschließend gleichung II plus gleichung Ia:

[mm] \pmat{ -2 & -6 & -6 \\ 2 & 7 & 9 \\ 0 & 0 & 0 } [/mm]  = [mm] \vektor{-2 \\ 9 \\ 0 } [/mm]

II+Ia

[mm] \pmat{ -2 & -6 & -6 \\ 0 & 1 & 3 \\ 0 & 0 & 0 } [/mm]  = [mm] \vektor{-2 \\ 7 \\ 0 } [/mm]

bzw.

[mm] \pmat{ 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 } [/mm]  = [mm] \vektor{1 \\ 7 \\ 0 } [/mm]

in der dritten zeile habe ich

0*x + 0*y +0*z=0

dies ist (zb) für beliebige z erfüllt...

zweite zeile:

1*y + 3z = 7

y= 7 - 3z (III)


erste zeile:

1*x + 3y +3z = 1

ergebnis (III) einsetzen:


x + 3(7-3z) +3z = 1

x +21 -9z +3z = 1

x= -20 + 6z

wie gesagt z ist beliebig frei wählbar... d.h. es gibt unendlich viele lösungen.

aufgabe 2
ich gehe auch hier davon aus, dass das gleichungssystem beliebig viele lösungen besitzt.

allgemein gilt:

man bringt eine matrix zunächst auf die dreiecksform.

dann rechnet man die einzelnen variablen aus.

führt diese rechnung auf einen mathematischen widerspruch, hat das gleichungssystem keine lösung / ist nicht lösbar.

dies wäre hier der fall wenn  die dritte zeile z.b. so aussehen würde:

[mm] \pmat{ 0 & 0 & 0 } [/mm] = [mm] \vektor{-2} [/mm]

da es kein x bzw. y bzw. z gibt, für die diese gleichung erfüllt ist.

d.h   0*x + 0*y + 0*z = -2    => WIDERSPRUCH


eine eindeutige lösung hätte das gleichungssystem, wenn

x, y und z einen ganz bestimmten wert hätten. z.b.

x=1 und y=-2 und z = [mm] -\bruch{2}{3} [/mm]


alles klar?!

gruß
wolfgang

Bezug
                
Bezug
Eindeutig Lösbares G-System?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Sa 04.11.2006
Autor: Informacao

Hi Hase,

danke für die Antwort. Ich rechne es nochmal nach, damit ich sicher bin, dass ich das verstehe :-) Aber so klingt es schon mal logisch!

Viele Grüße
Informacao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]