Eindeutigkeit bei Wurzeln < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:27 Di 14.09.2010 | Autor: | oli_k |
Hallo,
bei der DGL-Diskussion sollen wir auf die Eindeutigkeit der Lösung eingehen. Da wir eigentlich nur lineare DGL haben, ist die Lösung meist für y ungleich 0 eindeutig und für y gleich 0 nicht eindeutig, da y meist einen Bruch als Exponenten hat bzw. irgendeine Wurzel über sich.
Aber wann genau ist denn eine Wurzelfunktion bei y=0 nun differenzierbar und wann nicht? Dass [mm] \wurzel{y} [/mm] bei 0 n.d. ist, ist mir ja klar, da die Ableitung bei 0 eine Polstelle hat.
Doch jetzt mal [mm] \wurzel{x^3} [/mm] - nun kann ich ja nach dem Ableiten "die Polstelle im Nenner rauskürzen" und komme auf [mm] 3\wurzel{y}/2, [/mm] was für y=0 doch wohl definiert ist. Richtig?
Muss ich also nur aufpassen, wenn der Exponent zwischen 0 und 1 liegt?
Danke!
|
|
|
|
Hallo oli_k,
> Hallo,
>
> bei der DGL-Diskussion sollen wir auf die Eindeutigkeit der
> Lösung eingehen. Da wir eigentlich nur lineare DGL haben,
> ist die Lösung meist für y ungleich 0 eindeutig und für
> y gleich 0 nicht eindeutig, da y meist einen Bruch als
> Exponenten hat bzw. irgendeine Wurzel über sich.
>
> Aber wann genau ist denn eine Wurzelfunktion bei y=0 nun
> differenzierbar und wann nicht? Dass [mm]\wurzel{y}[/mm] bei 0 n.d.
> ist, ist mir ja klar, da die Ableitung bei 0 eine Polstelle
> hat.
>
> Doch jetzt mal [mm]\wurzel{x^3}[/mm] - nun kann ich ja nach dem
> Ableiten "die Polstelle im Nenner rauskürzen" und komme
> auf [mm]3\wurzel{y}/2,[/mm] was für y=0 doch wohl definiert ist.
> Richtig?
Ja.
>
> Muss ich also nur aufpassen, wenn der Exponent zwischen 0
> und 1 liegt?
Nicht nur hier mußt Du aufpassen, sondern auch bei
allen Exponenten, die kleiner 0 sind.
>
> Danke!
Gruss
MathePower
|
|
|
|