Einfach zusammenhängend < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 19:00 Di 28.01.2014 | Autor: | AleSan |
Aufgabe | Eine stetige Kurve α : [a; b] -> Ω, Ω Teilmenge von R
heißt geschlossen, wenn α(a) = α(b) gilt. Eine stetige geschlossene
Kurve heißt null-homotop, wenn sie homotop zu einer konstanten Kurve β kongruent zu x0 ist, d.h. die (Spur der)
Kurve lässt sich stetig in einen Punkt x0 zusammenziehen. Beweisen Sie, dass Gebiet Ω genau dann einfach
zusammenhängend ist, wenn jede stetige geschlossenene Kurve in Ω null-homotop ist. |
Die Hinrichtung habe ich noch recht schnell gesehen und lösen können. Doch nun kommt die Rückrichtung und die macht mir schon Probleme. Da ich jetzt nur davon ausgehen kann, dass jede stetig geschlossene Kurve nullhomotop ist auf Omega.
Wenn ich nun aber die allg. Definition von einfach zusammenhängend nehme: "Zwei bel. in Omega verlaufende Kurven sind zueinander homotop.", habe ich das Problem das ich nicht weiß wie ich eine Homotopie wählen kann die eine Homotopie für eine Kurve mit verschiedenen Anfangs- und endpunkt auf eine geschlossene Kurve bildet.
Bin für jeden Tipp dankbar :)
MfG AleSan
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
EDIT: Mein jetziger Gedanke wäre: Durch Umparametrisierung könnte es mir doch möglich sein von zwei Kurven mit gleichem Anfangswert und gleichem Endwert diese zu geschlossenen Kurven mit gleichem Anfangs-/Endwert zu parametrisieren und da diese beide homotop zu der konstanten Kurve sind, und reguläre Homotopie eine Äquivalenzrelation ist sind die beiden geschlossenen Kurven auch homotop und da Homotopie auch invariant gegenüber Parametrisierung sind, sind die ursprünglichen bel. gewählten Kurven homotop.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Do 30.01.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|