matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisEinfacher Koeffizientenverglei
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Einfacher Koeffizientenverglei
Einfacher Koeffizientenverglei < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfacher Koeffizientenverglei: Idee
Status: (Frage) beantwortet Status 
Datum: 22:09 Mo 03.12.2012
Autor: Lonpos

Aufgabe
[mm] \summe_{j=0}^{\infty}( (j+1)w_{j+1}+\summe_{k=0}^{j}w_{j}w_{j-k})z^j=z [/mm]

Es ist für mich kein Problem die ersten Glieder zu berechnen,

z.B [mm] w_1=-w_0^2, w_2=w_0^3+\bruch{1}{2} [/mm]

wie komme ich aber auf

[mm] w_{j+1}=\bruch{-1}{j+1}\summe_{k=0}^{j}w_{k}w_{j-k} [/mm] ??

        
Bezug
Einfacher Koeffizientenverglei: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mo 03.12.2012
Autor: leduart

Hallo
für alle [mm] j\ne [/mm] 1 muss doch $ [mm] (j+1)w_{j+1}+\summe_{k=0}^{j}w_{j}w_{j-k})=0 [/mm] $ sein
für j=1 dagegen 1
Gruss leduart

Bezug
                
Bezug
Einfacher Koeffizientenverglei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mo 03.12.2012
Autor: Lonpos

Habe ich glatt übersehen, ich bin mir auch bei folgender ähnlicher Gleichung nicht sicher:

[mm] \summe_{j=0}^{\infty}jw_j z^{j-1}+\summe_{j=0}^{\infty}w_j z^j=\bruch{1}{1-z} [/mm]

Dies nach [mm] w_j [/mm] auflösen. dazu habe ich mir gedacht, die re. Seite zu schreiben als [mm] \summe_{j=0}^{\infty}z^j [/mm] für |z|<1

Um auf die geschlossene Form zu kommen, stört mich, [mm] z^j [/mm] nicht herausheben zu können.

Bezug
                        
Bezug
Einfacher Koeffizientenverglei: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Di 04.12.2012
Autor: leduart

Hallo
zieh einfach [mm] z^{-1} [/mm] aus der ersten summe raus oder z aus der zweiten und hinteren.
Gruss leduart

Bezug
                                
Bezug
Einfacher Koeffizientenverglei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Di 04.12.2012
Autor: Lonpos

Ich bin jetzt gerade bei etwas verunsichert, die Ableitung der Summe

[mm] \summe_{j=0}^{\infty}w_j z^j [/mm] ist doch [mm] \summe_{j=0}^{\infty}j*w_j z^{j-1} [/mm] oder [mm] \summe_{j=1}^{\infty}j*w_j z^{j-1} [/mm] ??

Bezug
                                        
Bezug
Einfacher Koeffizientenverglei: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 Di 04.12.2012
Autor: leduart

Hallo
das zweite, denn [mm] w_0z^0 [/mm] abgeleitet ergibt 0 und nicht [mm] w_0/z [/mm]
im zweifel schreibt man die ersten paar glieder der Summe aus und sieht das Ergebnis.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]