matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEinheitengruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Einheitengruppe
Einheitengruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitengruppe: Stimmt das?
Status: (Frage) beantwortet Status 
Datum: 12:12 Mi 11.04.2012
Autor: tinakru

Aufgabe
Geben sie einen endlichen Körper und einen unendlichen Körper an, sodass die Einheitengruppe eine Untergruppe besitzt, die isomorph zu [mm] \IZ/31\IZ [/mm] ist.

Hallo,

hier mal meine Lösung.

Der endliche Körper [mm] \IF_{2^5} [/mm] hat 32 Elemente. Also hat die Einheitengruppe 31 Elemente. Da es nur eine Gruppe der Ordnung 31 gibt, ist die Einheitengruppe isomorph zu [mm] \IZ/31\IZ. [/mm]
[mm] \IZ/31\IZ [/mm] ist offensichtlich eine Untergruppe von [mm] \IZ/31\IZ. [/mm]

Das müsste passen, da war ich mir bei der Lösung eigentlich 100% sicher :-)

Aber nun zum unendlichen Körper.

Betrachte [mm] \IQ(\zeta) [/mm] mit [mm] \zeta [/mm] = [mm] e^{2\pi i / 31} [/mm] als primitive 31. Einheitswurzel.

Dann ist [mm] \zeta [/mm] eine Einheit in  [mm] \IQ(\zeta) [/mm] und es gilt [mm] ord(<\zeta>) [/mm] = 31

Also gibt es eine Untergruppe der Ordnung 31.

Stimmt das?!

Danke
Grüße Tina

        
Bezug
Einheitengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Mi 11.04.2012
Autor: felixf

Moin!

> Geben sie einen endlichen Körper und einen unendlichen
> Körper an, sodass die Einheitengruppe eine Untergruppe
> besitzt, die isomorph zu [mm]\IZ/31\IZ[/mm] ist.
>  
> hier mal meine Lösung.
>  
> Der endliche Körper [mm]\IF_{2^5}[/mm] hat 32 Elemente. Also hat
> die Einheitengruppe 31 Elemente. Da es nur eine Gruppe der
> Ordnung 31 gibt, ist die Einheitengruppe isomorph zu
> [mm]\IZ/31\IZ.[/mm]
>  [mm]\IZ/31\IZ[/mm] ist offensichtlich eine Untergruppe von
> [mm]\IZ/31\IZ.[/mm]
>  
> Das müsste passen, da war ich mir bei der Lösung
> eigentlich 100% sicher :-)
>  
> Aber nun zum unendlichen Körper.
>  
> Betrachte [mm]\IQ(\zeta)[/mm] mit [mm]\zeta[/mm] = [mm]e^{2\pi i / 31}[/mm] als
> primitive 31. Einheitswurzel.
>  
> Dann ist [mm]\zeta[/mm] eine Einheit in  [mm]\IQ(\zeta)[/mm] und es gilt
> [mm]ord(<\zeta>)[/mm] = 31
>  
> Also gibt es eine Untergruppe der Ordnung 31.
>  
> Stimmt das?!

Ja, das stimmt so.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]