matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEinheitengruppe Polynomring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Einheitengruppe Polynomring
Einheitengruppe Polynomring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitengruppe Polynomring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 So 12.10.2014
Autor: Picard

Hallo,

laut meinem Script beinhaltet die Einheitengruppe vom Ring [mm] (\IK[T],+,*) [/mm] genau die Polynome deren Grad gleich null ist.

D.h. doch, alle konstanten Polynome sind invertierbar. Oder?
Beispiel: p=3 das inverse dazu wäre dann q=1/3, also p*q=1. Sehe ich das richtig?

Wenn ich nun aber [mm] p=x^{2}+1 [/mm] habe warum ist [mm] q=\bruch{1}{x^{2}+1} [/mm] kein inverses Element? Mir ist klar, dass q kein konstantes Polynom ist, aber warum kann es kein inverses Element sein? Ist es vielleicht kein Polynom, sprich ist es kein Element aus [mm] \IK[T], [/mm] woran erkenne ich das?

Danke für eure Hilfe.

Gruß
Picard

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Einheitengruppe Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 So 12.10.2014
Autor: UniversellesObjekt

Hallo,

> Hallo,
>  
> laut meinem Script beinhaltet die Einheitengruppe vom Ring
> [mm](\IK[T],+,*)[/mm] genau die Polynome deren Grad gleich null
> ist.
>  
> D.h. doch, alle konstanten Polynome sind invertierbar.
> Oder?
>  Beispiel: p=3 das inverse dazu wäre dann q=1/3, also
> p*q=1. Sehe ich das richtig?
>  
> Wenn ich nun aber [mm]p=x^{2}+1[/mm] habe warum ist
> [mm]q=\bruch{1}{x^{2}+1}[/mm] kein inverses Element?

Du musst zunächst einmal klarstellen, was hiermit gemeint ist. Ist nämlich $ a $ ein Element eines Ringes, so meint man mit $ 1/a $ üblicherweise dessen Inverses. Die Schreibweise setzt also voraus, dass die Invertierbarkeit von $ [mm] x^2+1$ [/mm] schon bekannt ist, was ja nicht der Fall ist.

> Mir ist klar,
> dass q kein konstantes Polynom ist, aber warum kann es kein
> inverses Element sein? Ist es vielleicht kein Polynom,
> sprich ist es kein Element aus [mm]\IK[T],[/mm] woran erkenne ich
> das?

Zum Beweis der Aussage betrachte die Grade. Nimm an, du hättest ein Inverses eines Nichtkonstanten Polynoms. Wieso muss das Produkt der beiden Polynome dann Grad $> 0$ haben? Wieso kann es also nicht $1$ sein?

> Danke für eure Hilfe.
>  
> Gruß
>  Picard
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]