matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikEinheitskreis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Einheitskreis
Einheitskreis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitskreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Sa 21.05.2011
Autor: folken

Aufgabe
Ein Punkt wird zufällig im Einheitskreis (Kreis mit Radius 1 und Mittelpunkt im Ursprung) gewählt (gemäß der Gleichverteilung). X sei seine x-Koordinate Y sein mit der positiven x-Achse eingeschlossener Winkel. Sind X und Y unabhängig? Beweisen Sie Ihre Antwort.

Hallo,

mir ist klar, das diese abhängig sind. Ich vermute mal das man das mit sinus und cosinus zeigen muss. Ich verstehe nur nicht wie ich beim Beweis hier vorgehen soll.


Gruß folken

        
Bezug
Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Sa 21.05.2011
Autor: Teufel

Hi!

Vielleicht kann man das so machen:
Guck dir mal $P(X>0, [mm] -\frac{\pi}{2}0)*P(-\frac{\pi}{2}
Nun rechne aber mal $P(X>0, [mm] -\pi0|-\frac{\pi}{2}
(wahlweise kannst du die Winkel natürlich alle noch so zurechtstutzen, dass sie zwischen 0 und [mm] 2*\pi [/mm] liegen)

Bezug
                
Bezug
Einheitskreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Sa 21.05.2011
Autor: folken

Danke erstmal für die schnelle Antwort,

> Hi!
>  
> Vielleicht kann man das so machen:
>  Guck dir mal [mm]P(X>0, -\pi
> unabhängig, so müsste das
> [mm]=P(X>0)*P(-\pi
> sein (X ist ja gleichverteilt auf [mm][-1,1][/mm], Y ist
> gleichverteilt auf [mm][-\pi,\frac{3}{2}*\pi][/mm]).
>  
> Nun rechne aber mal [mm]P(X>0, -\pi0|-\pi
> aus.

Hier verstehe ich nicht, wie ich das ausrechnen soll:
[mm] P(X>0|-\pi im Zähler denn Schnitt berechnen, da weiss ich nicht wie man das ausrechnen soll.
Weiter verstehe ich nicht, in welcher Hinsicht, das dann ein Beweis wäre.

>  
> (wahlweise kannst du die Winkel natürlich alle noch so
> zurechtstutzen, dass sie zwischen 0 und [mm]2*\pi[/mm] liegen)

Warum kann ich nicht gleich Y von 0 bis [mm] 2\pi [/mm] laufen lassen statt von [mm] -\pi [/mm]
bis [mm] \pi. [/mm]

Bezug
                        
Bezug
Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Sa 21.05.2011
Autor: Teufel

Hi!

Ich habe das Intervall nur so komisch gewählt, um den Schreibaufwand etwas zu verringern. Wenn man Y in [mm] [0,2\pi] [/mm] laufen lässt, du müsste ich das Ereignis [mm] \{-\frac{\pi}{2} Ich sehe auch gerade, dass ich statt [mm] \frac{\pi}{2} [/mm] überall nur [mm] \pi [/mm] geschrieben habe, werde ich gleich ändern!

Auf alle Fälle gilt doch:
$ [mm] P(X>0|-\frac{\pi}{2}

Bezug
                                
Bezug
Einheitskreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Sa 21.05.2011
Autor: folken

Ich stelle mich wahrscheinlich gerade etwas dumm an, aber ich verstehe immer noch nicht, warum mir das zeigt, dass die beiden variablen voneinander abhängig sein müssen. Ich sehe auch noch nicht den Zusammenhang, was das mit dem ersten Teil, wo wir [mm] \bruch{1}{4} [/mm] rausbekommen haben zu tun hat. Es wäre toll wenn du mir nur noch das erklären könntest.

Bezug
                                        
Bezug
Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Sa 21.05.2011
Autor: Teufel

Ah ok!

Also 2 Zufallsvariablen X und Y sind doch genau unabhängig, wenn für alle Mengen A, B aus ihrem Wertebereich gilt:

[mm] $P(X\in [/mm] A, [mm] Y\in [/mm] B)=P(X [mm] \in [/mm] A)*P(Y [mm] \in [/mm] B)$.

Für deine Aufgabe habe ich A und B konkret gewählt und ich wollte dann einfach mal beide Seiten vergleichen. Auf der rechten Seite kam [mm] \frac{1}{4} [/mm] raus. Wenn auf der linken etwas anderes rauskommen würde, so würde das schon zeigen, dass X und Y nicht unabhängig sein können!

Du kannst die linke Seite auch ohne die bedingte Wahrscheinlichkeit ausrechnen, wenn du willst. Beachte dazu einfach, dass gilt:
$X>0 [mm] \gdw Y\in [-\frac{\pi}{2},\frac{\pi}{2}]$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]