matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenEinhüllende d. Kurvenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Einhüllende d. Kurvenschar
Einhüllende d. Kurvenschar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einhüllende d. Kurvenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Di 04.03.2014
Autor: Thomas_Aut

Aufgabe
Bestimme die Einhüllende der Kurvenschar:
[mm] $2(x-a)^2 +2y^2 [/mm] = [mm] a^2$ [/mm]

Hallo,

Wärt ihr so nett mal drüberzuschauen:

$F(x,y,a) = [mm] 2(x-a)^2 +2y^2 [/mm] - [mm] 2a^2 [/mm] = 0$ ist stetig diffbar.

[mm] $\frac{\partial F}{\partial a} [/mm] = -4x +2a = 0 [mm] \gdw [/mm] a=2x$

somit also: $F(x,y,2x) = [mm] 2x^2+2y^2-4x^2 [/mm] = [mm] 2y^2 [/mm] - [mm] 2x^2 [/mm] = 0 [mm] \gdw [/mm] |y| = x$

Damit erhalten wir die implizite Darstellung der Kurve auf der die Punkte der Einhüllenden liegen.

Sehen wir uns die singulären Punkte an.

[mm] $\frac{\partial F}{\partial x} [/mm] = 4x-4a = 0 $ , also $ x = a$
[mm] $\frac{\partial F}{\partial y} [/mm] = 4y = 0 $ , also $ y = 0$
Somit sind die singulären Punkte : $(x,y) = (a,0)$ ,diese liegen allerdings nur für a=0 auf der Scharkurve , da $F(a,0,a) = [mm] -a^2 [/mm] = 0$.

Die singulären Punkte könnten auch Punkte der Einhüllenden sein, aber:

$ [mm] \frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) [/mm] - [mm] \frac{\partial^2 F}{\partial x \partial y}(a,b) [/mm] = 16 > 0$ , also ist (a,b) isolierter Punkt.


Beste Grüße und Dank

Thomas



        
Bezug
Einhüllende d. Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 04.03.2014
Autor: MathePower

Hallo Thomas_Aut,

> Bestimme die Einhüllende der Kurvenschar:
>  [mm]2(x-a)^2 +2y^2 = a^2[/mm]
>  Hallo,
>  
> Wärt ihr so nett mal drüberzuschauen:
>  
> [mm]F(x,y,a) = 2(x-a)^2 +2y^2 - 2a^2 = 0[/mm] ist stetig diffbar.
>  
> [mm]\frac{\partial F}{\partial a} = -4x +2a = 0 \gdw a=2x[/mm]
>
> somit also: [mm]F(x,y,2x) = 2x^2+2y^2-4x^2 = 2y^2 - 2x^2 = 0 \gdw |y| = x[/mm]
>  
> Damit erhalten wir die implizite Darstellung der Kurve auf
> der die Punkte der Einhüllenden liegen.
>  
> Sehen wir uns die singulären Punkte an.
>  
> [mm]\frac{\partial F}{\partial x} = 4x-4a = 0[/mm] , also [mm]x = a[/mm]
>  
> [mm]\frac{\partial F}{\partial y} = 4y = 0[/mm] , also [mm]y = 0[/mm]
>  Somit
> sind die singulären Punkte : [mm](x,y) = (a,0)[/mm] ,diese liegen
> allerdings nur für a=0 auf der Scharkurve , da [mm]F(a,0,a) = -a^2 = 0[/mm].
>  
> Die singulären Punkte könnten auch Punkte der
> Einhüllenden sein, aber:
>  
> [mm]\frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) - \frac{\partial^2 F}{\partial x \partial y}(a,b) = 16 > 0[/mm]
> , also ist (a,b) isolierter Punkt.
>  


Alles richtig. [ok]


>
> Beste Grüße und Dank
>  
> Thomas
>  

Gruss
MathePower

Bezug
                
Bezug
Einhüllende d. Kurvenschar: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:51 Di 04.03.2014
Autor: Thomas_Aut

Hallo Mathepower,

> Hallo Thomas_Aut,
>  
> > Bestimme die Einhüllende der Kurvenschar:
>  >  [mm]2(x-a)^2 +2y^2 = a^2[/mm]
>  >  Hallo,
>  >  
> > Wärt ihr so nett mal drüberzuschauen:
>  >  
> > [mm]F(x,y,a) = 2(x-a)^2 +2y^2 - 2a^2 = 0[/mm] ist stetig diffbar.
>  >  
> > [mm]\frac{\partial F}{\partial a} = -4x +2a = 0 \gdw a=2x[/mm]
> >
> > somit also: [mm]F(x,y,2x) = 2x^2+2y^2-4x^2 = 2y^2 - 2x^2 = 0 \gdw |y| = x[/mm]
>  
> >  

> > Damit erhalten wir die implizite Darstellung der Kurve auf
> > der die Punkte der Einhüllenden liegen.
>  >  
> > Sehen wir uns die singulären Punkte an.
>  >  
> > [mm]\frac{\partial F}{\partial x} = 4x-4a = 0[/mm] , also [mm]x = a[/mm]
>  >

>  
> > [mm]\frac{\partial F}{\partial y} = 4y = 0[/mm] , also [mm]y = 0[/mm]
>  >  
> Somit
> > sind die singulären Punkte : [mm](x,y) = (a,0)[/mm] ,diese liegen
> > allerdings nur für a=0 auf der Scharkurve , da [mm]F(a,0,a) = -a^2 = 0[/mm].
>  
> >  

> > Die singulären Punkte könnten auch Punkte der
> > Einhüllenden sein, aber:
>  >  
> > [mm]\frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) - \frac{\partial^2 F}{\partial x \partial y}(a,b) = 16 > 0[/mm]
> > , also ist (a,b) isolierter Punkt.
>  >  
>
>
> Alles richtig. [ok]

Für $a=0$ müsste der Punkt aber sehrwohl auf der Einhüllenden liegen oder? da ja die Gleichung $|y|=x$ für $(x,y) = (a,0)$ mit $a = 0$ erfüllt ist...

Lg

>  
>
> >
> > Beste Grüße und Dank
>  >  
> > Thomas
>  >  
>
> Gruss
>  MathePower


Bezug
                        
Bezug
Einhüllende d. Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Di 04.03.2014
Autor: MathePower

Hallo Thomas_Aut,

> Hallo Mathepower,
>  
> > Hallo Thomas_Aut,
>  >  
> > > Bestimme die Einhüllende der Kurvenschar:
>  >  >  [mm]2(x-a)^2 +2y^2 = a^2[/mm]
>  >  >  Hallo,
>  >  >  
> > > Wärt ihr so nett mal drüberzuschauen:
>  >  >  
> > > [mm]F(x,y,a) = 2(x-a)^2 +2y^2 - 2a^2 = 0[/mm] ist stetig diffbar.
>  >  >  
> > > [mm]\frac{\partial F}{\partial a} = -4x +2a = 0 \gdw a=2x[/mm]
> > >
> > > somit also: [mm]F(x,y,2x) = 2x^2+2y^2-4x^2 = 2y^2 - 2x^2 = 0 \gdw |y| = x[/mm]
>  
> >  

> > >  

> > > Damit erhalten wir die implizite Darstellung der Kurve auf
> > > der die Punkte der Einhüllenden liegen.
>  >  >  
> > > Sehen wir uns die singulären Punkte an.
>  >  >  
> > > [mm]\frac{\partial F}{\partial x} = 4x-4a = 0[/mm] , also [mm]x = a[/mm]
>  
> >  >

> >  

> > > [mm]\frac{\partial F}{\partial y} = 4y = 0[/mm] , also [mm]y = 0[/mm]
>  >  
> >  

> > Somit
> > > sind die singulären Punkte : [mm](x,y) = (a,0)[/mm] ,diese liegen
> > > allerdings nur für a=0 auf der Scharkurve , da [mm]F(a,0,a) = -a^2 = 0[/mm].
>  
> >  

> > >  

> > > Die singulären Punkte könnten auch Punkte der
> > > Einhüllenden sein, aber:
>  >  >  
> > > [mm]\frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) - \frac{\partial^2 F}{\partial x \partial y}(a,b) = 16 > 0[/mm]
> > > , also ist (a,b) isolierter Punkt.
>  >  >  
> >
> >
> > Alles richtig. [ok]
>  
> Für [mm]a=0[/mm] müsste der Punkt aber sehrwohl auf der
> Einhüllenden liegen oder? da ja die Gleichung [mm]|y|=x[/mm] für
> [mm](x,y) = (a,0)[/mm] mit [mm]a = 0[/mm] erfüllt ist...
>  


Ja, da hast Du recht.

Für  a=0 erhältst Du, ausgehend von der
gegebenen Kurvenschar, nur einen einzigen Punkt.


> Lg
>  >  
> >
> > >
> > > Beste Grüße und Dank
>  >  >  
> > > Thomas
>  >  >  
> >
> > Gruss
>  >  MathePower
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]