matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenEinschränkung auf Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Einschränkung auf Gerade
Einschränkung auf Gerade < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einschränkung auf Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Di 01.12.2009
Autor: Bleistiftkauer

Aufgabe
Sei f: [mm] \IR^{2} \to \IR [/mm] mit f(x,y) = ( y - [mm] x^{2} [/mm] ) (y - [mm] 2x^{2}). [/mm]

Wie sähe eine Einschränkung von f auf eine beliebige Gerade durch den Nullpunkt aus?

        
Bezug
Einschränkung auf Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Di 01.12.2009
Autor: XPatrickX

Hallo,

Um den Graph auf einer Ursprungsgerade zu betrachten, kannst du doch y=tx setzen.

Gruß Patrick

Bezug
        
Bezug
Einschränkung auf Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Di 01.12.2009
Autor: fred97

Ergänzend zu Patrick:

Betrachten mußt Du auch noch die Gerade x=0.

Die Einschränkung von f auf diese gerade ist dann: f(0,y) = [mm] y^2 [/mm]

FRED

Bezug
                
Bezug
Einschränkung auf Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Mi 02.12.2009
Autor: Bleistiftkauer

das verwirrt mich grad etwas.

also wie genau sieht die einschränkung auf eine gerade aus?

f(x,y) = [mm] y^{2} [/mm]

oder wie?

Bezug
                        
Bezug
Einschränkung auf Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Mi 02.12.2009
Autor: angela.h.b.


> das verwirrt mich grad etwas.
>  
> also wie genau sieht die einschränkung auf eine gerade
> aus?

Hallo,

wenn Du nur die Punkte berachtest, die auf der Geraden y=tx liegen,

dann wird aus f(x,y) = ( y - $ [mm] x^{2} [/mm] $ ) (y - $ [mm] 2x^{2}). [/mm] $

[mm] f_1(x) [/mm] = ( tx - $ [mm] x^{2} [/mm] $ ) (tx - $ [mm] 2x^{2}). [/mm]

Für die Gerade x=0 entsprechend - das hat Fred ja schon vorgemacht.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]