matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeEinzelschrittverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Numerik linearer Gleichungssysteme" - Einzelschrittverfahren
Einzelschrittverfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einzelschrittverfahren: Fehler zwischen 2 Schritten
Status: (Frage) beantwortet Status 
Datum: 10:21 Mo 22.05.2006
Autor: MrPink

Hallo, ich habe mir den Artikel zum Einzelschrittverfahren auf Wikipedia durchgelesen. (http://de.wikipedia.org/wiki/Gauss-Seidel-Algorithmus).
An einer Stelle vermute ich allerdings einen Fehler. Es wäre also nett wenn dass jemand bestätigen könnte, oder wenn ihr mir sagt, warum das so sein muss.
Und zwar die Algorithmus skizze die Zeile
fehler = max(fehler , .... )

und dann ist als abbruchsbedingung fehler < fehlerschranke gegeben.

Kann das denn? annahme, der Fehler ist im ersten schritt größer als fehlerschranke, dann würde der algorthmus nicht terminieren. Sollte es niicht fehler = min(fehler,...) heissen ?

Noch ein andere dazugehörige Frage: Wird die Aprroximation von Schritt zu Schritt besser, oder kann es vorkommen das sie auch mal schlechter wird ?

Vielen Dank im Voraus

MrPink

        
Bezug
Einzelschrittverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Mo 22.05.2006
Autor: mathemaduenn

Hallo MrPink,
Man hätte hier bei Wikipedia vllt. hinschreiben sollen das man das max über alle k meint. Also praktisch die Max-Norm des Fehlers
[mm] ||x^{m+1}-x^m||_{\infty} [/mm]
Die Fehlerschranke sollte aber ohnehin aus einer Kombination von relativem und absolutem Fehler bestehen.
[mm] ||x^{m+1}-x^m||_{\infty}<\varepsilon_r||x^m||_{\infty}+\varepsilon_{abs} [/mm]
Es wäre albern für betragsmäßig große x die gleiche Fehlerschranke zu fordern wie für kleine.

GS-Verfahren muß nicht konvergieren. Ich weiß nicht ob's klappt aber Du kannst es ja mal mit
[mm] \pmat{ 1 & 10 \\ 10 & 1 } [/mm] versuchen.

viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]