matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikEinzelwahrscheinlichkeiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Einzelwahrscheinlichkeiten
Einzelwahrscheinlichkeiten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einzelwahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mi 06.05.2009
Autor: kavonmathe

Hi Leute,

ich bin neu hier und brauche Hilfe bei meiner Stochastik-Hausaufgabe.


Die Frage lautet wie folgt:

Wir betrachten die Menge von Elementarereignissen  [mm] \omega = \left\{1,2,3,4,5\right\} [/mm]. Wir wissen, dass

  [mm]P\left[\left\{1,2,3\right\}\right] = \bruch{11}{12} [/mm]

  [mm]P\left[\left\{2,3,4\right\}\right] = \bruch{1}{2}[/mm]  

  [mm]P\left[\left\{2,3\right\}\right] = \bruch{5}{12} [/mm]

  [mm]P\left[\left\{2,5\right\}\right]= \bruch{1}{4}[/mm]

Ich soll nun die Einzelwahrscheinlichkeiten für alle Elemente von [mm]\omega[/mm] berechnen.



Ich habe kein Problem dies für [mm]\left\{1\right\}[/mm] und [mm]\left\{4\right\}[/mm] zu tun:

[mm]P\left[\left\{1\right\}\right] = P\left[\left\{1,2,3\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{2}[/mm]  

[mm]P\left[\left\{4\right\}\right] = P\left[\left\{2,3,4\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{12}[/mm]  

Das geht aber leider nur für diese beiden Elemente und ist sicher ohnehin nicht der richtige Ansatz.

Wäre nett, wenn mir jemand weiterhelfen kann und mir den richtigen Ansatz/Lösungsweg verrät.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Vielen Dank im Vorraus
Gruß



        
Bezug
Einzelwahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Mi 06.05.2009
Autor: luis52

Moin,

zunaechst ein [willkommenmr]

> Ich habe kein Problem dies für [mm]\left\{1\right\}[/mm] und
> [mm]\left\{4\right\}[/mm] zu tun:
>  
> [mm]P\left[\left\{1\right\}\right] = P\left[\left\{1,2,3\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{2}[/mm]
>  
>
> [mm]P\left[\left\{4\right\}\right] = P\left[\left\{2,3,4\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{12}[/mm]

[ok]

Es gilt [mm] $1=P(\Omega)=P(\{1,2,3\}\cup\{4\}\cup\{5\})$ [/mm] ...

vg Luis          


Bezug
                
Bezug
Einzelwahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Mi 06.05.2009
Autor: kavonmathe

Hi,

danke für die schnelle Antwort :)


Sie war kurz, aber hat mich zum Nachdenken gebracht.
Hier ist meine komplette Lösung:


[mm]P\left[\left\{1\right\}\right] = P\left[\left\{1,2,3\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{2}[/mm]  

[mm]P\left[\left\{4\right\}\right] = P\left[\left\{2,3,4\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{12}[/mm]

[mm]P\left[\left\{1,2,3,4\right\}\right] = P\left[\left\{1,2,3\right\}\right] + P\left[\left\{4\right\}\right] = \bruch{11}{12} + \bruch{1}{12} = 1[/mm]

[mm]\Rightarrow P\left[\left\{5\right\}\right] = P\left[\omega\right] - P\left[\left\{1,2,3,4\right\}\right] = 1- 1 = 0[/mm]

[mm]P\left[\left\{2\right\}\right] = P\left[\left\{2,5\right\}\right] - P\left[\left\{5\right\}\right] = \bruch{1}{4} - 0 = \bruch{1}{4}[/mm]

[mm]P\left[\left\{4\right\}\right] = P\left[\left\{2,3\right\}\right] - P\left[\left\{2\right\}\right] = \bruch{5}{12} - \bruch{1}{4} = \bruch{1}{6}[/mm]



Gruß



Bezug
                        
Bezug
Einzelwahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mi 06.05.2009
Autor: luis52


> Hi,
>  
> danke für die schnelle Antwort :)
>  
>
> Sie war kurz, aber hat mich zum Nachdenken gebracht.
>  Hier ist meine komplette Lösung:
>  
>
> [mm]P\left[\left\{1\right\}\right] = P\left[\left\{1,2,3\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{2}[/mm]
>  
>
> [mm]P\left[\left\{4\right\}\right] = P\left[\left\{2,3,4\right\}\right] - P\left[\left\{2,3\right\}\right] = \bruch{1}{12}[/mm]
>
> [mm]P\left[\left\{1,2,3,4\right\}\right] = P\left[\left\{1,2,3\right\}\right] + P\left[\left\{4\right\}\right] = \bruch{11}{12} + \bruch{1}{12} = 1[/mm]
>
> [mm]\Rightarrow P\left[\left\{5\right\}\right] = P\left[\omega\right] - P\left[\left\{1,2,3,4\right\}\right] = 1- 1 = 0[/mm]
>
> [mm]P\left[\left\{2\right\}\right] = P\left[\left\{2,5\right\}\right] - P\left[\left\{5\right\}\right] = \bruch{1}{4} - 0 = \bruch{1}{4}[/mm]
>
> [mm]P\left[\left\{4\right\}\right] = P\left[\left\{2,3\right\}\right] - P\left[\left\{2\right\}\right] = \bruch{5}{12} - \bruch{1}{4} = \bruch{1}{6}[/mm]
>

Alles korrekt, bis auf den Schluss: [mm] P(\{3\})=\ldots [/mm]

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]