matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraEisenstein-Kriterium
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Eisenstein-Kriterium
Eisenstein-Kriterium < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eisenstein-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 So 02.11.2008
Autor: Fry

Hallo!

Beim Beweis des Eisenstein-Kriterium ist es wichtig, dass man ein primitives Polynom f gegeben hat. Warum ? Was folgt daraus ?


LG
Christian

        
Bezug
Eisenstein-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 So 02.11.2008
Autor: felixf

Hallo Christian

> Beim Beweis des Eisenstein-Kriterium ist es wichtig, dass
> man ein primitives Polynom f gegeben hat. Warum ? Was folgt
> daraus ?

Nimm doch mal das Polynom $f = 3 [mm] x^2 [/mm] + 2 [mm] \cdot [/mm] 3 [mm] \in \IZ[x]$. [/mm] Dieses erfuellt die Voraussetungen von Eisenstein mit $p = 2$, allerdings ist es nicht primitiv: es gilt naemlich $f = 3 [mm] \cdot (x^2 [/mm] + 2)$. Und daran sieht man auch gleich, dass es nicht irreduzibel ist.

Oder allgemeiner: nicht primitive Polynome koennen niemals irreduzibel sein!

LG Felix


Bezug
                
Bezug
Eisenstein-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 So 02.11.2008
Autor: Fry

Hi Felix

danke für deine Beispiele.
Allerdings bezog sich meiner Frage her auf den Beweis des Kritieriums.
Welche Folgerungen kann man aus "f primitiv" ableiten ?
Habe im Internet gefunden, dass dann grad g,h > 0 folgt. Warum ?
(man hat f=g*h, f reduzibel vorausgesetzt)

Gruß
Christian


Bezug
                        
Bezug
Eisenstein-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Mo 03.11.2008
Autor: felixf

Hallo Christian

> danke für deine Beispiele.
>  Allerdings bezog sich meiner Frage her auf den Beweis des
> Kritieriums.
>  Welche Folgerungen kann man aus "f primitiv" ableiten ?
>  Habe im Internet gefunden, dass dann grad g,h > 0 folgt.

> Warum ?
>  (man hat f=g*h, f reduzibel vorausgesetzt)

Schreib doch mal $f = [mm] \lambda \cdot [/mm] g$ mit [mm] $\lambda \in [/mm] R [mm] \setminus \{ 0 \}$ [/mm] und $g [mm] \in [/mm] R[x]$. Das ist doch gerade der Fall [mm] $\deg \lambda [/mm] =0 $ und [mm] $\deg [/mm] g = [mm] \deg [/mm] f$.

Wenn du es so schreibst heisst das gerade, dass [mm] $\lambda$ [/mm] alle Koeffizienten von $f$ teilt. Da diese aber teilerfremd sind (da $f$ primitiv ist), folgt [mm] $\lambda \in [/mm] R^* = R[x]^*$.

Wenn also $f$ reduzibel ist, dann muss die Zerlegung in nicht-triviale Faktoren immer zwei Faktoren von Grad $> 0$ haben.

LG Felix


Bezug
                                
Bezug
Eisenstein-Kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Mo 03.11.2008
Autor: Fry

Super, vielen Dank Felix,
jetzt hats Klick! gemacht ; )

LG
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]